

A Qualitative Temporal Extension of Here-and-There Logic

Thomas Eiter¹, <u>Patrik Schneider^{1,2}</u>

(1) Institute of Logic & Computation, TU Wien, Austria(2) Siemens T DAI, Germany

Amsterdam, 6th of December 2022

Motivation

Traffic Congestions

- Large problem in big cities worldwide
- Estimate by WEF, cost for US economy: \$87 billion (2018) [Fleming, 2019]
- Microscopic traffic simulations:
 - Used to simulate traffic, e.g., SUMO
- Mesoscopic Traffic Flow Model (MTF):
 - Simulation of traffic flow over networks
 - Static/dynamic component
 - Abstraction of time, road network, vehicles
 - Used for TL signal plan configuration encoded as ASP rules [Eiter et al., 2020]
- Develop diagnosis methods on top MTF:
 - Traffic diagnosis to find "faulty" patterns such as inefficient signal plans or accidents

Traffic in Singapore [The Strait Times, 2016]

MTF of two intersections [Eiter et al., 2020]

Motivation (cont.)

- Horizont: Model-based diagnosis in a temporal setting applied to traffic diagnosis
- Starting point: Temporal Behavioral Models [Console1997]:
 - Temporal behavior formulae and integrity constraints that describe causal relation between explanations and observations under temporal constraints, i.e., using Allen's Interval Algebra

• Example:

water_ret(T_1), therapy(absent) explains blood_vol(high, T_2) { $T_1(before)T_2$ }

- The original syntax is not well suited for complex causal relations:
 - Temporal relations could be combined with atomic formulas
 - Nested temporal formulas and negation desired
 - "explains" could be replaced with ←, →, or ∧ depending on the reasoning task, .e.g., deduction, abduction, or consistency checking

 $(a \lor b) \land ((a \land \sim c) \text{ overlaps } (o_1 \lor o_2)) \lor ((b \land c) \text{ overlaps } (o_1 \lor o_2)) \land o_1 \land o_2$

Two observations o_1 , o_2 of low traffic caused by either a (normal) congestion a or by an accident b, while either roadworks c occurs or does not occur, denoted by $\sim c$ on overlapping time intervals

Preliminaries

- Allen's Interval Algebra (IA) [Allen1983]
 - Algebra/calculus to express temporal constraints
 - Domain is set of intervals defined over the linear order of $\mathbb T$
 - 13 basic relations hold between intervals
- Syntax: First-Order Here-and-There (FOHT) Logic [Heyting1930]
 - FO language: $\Sigma = \langle C, F, P \rangle$, constants/functions/predicates, (ground) terms, atoms, and literals are defined as usual
 - Two negations: \sim and \neg (strong and weak negation)
- Semantics: FOHT Logic
 - FOHT-model $M = \langle D_h, H, D_t, T \rangle$, where $C \subseteq D_h \subseteq D_t$ and $H \subseteq T \subseteq Lit$ such that there are no conflicting literals in T
 - Simpler with constant domain assumption $D_t = D_h$, FOHT_c-model: $M = \langle D, H, T \rangle$
 - Satisfaction relation: M, w ⊨ φ for w ∈ {h, t}, where we have a totally ordering of worlds, i.e., h ≤ h, h ≤ t, t ≤ t

- *R* Definition with start/end points
- $\begin{array}{ll} x(p)y & before(x,y) = \{(x,y): \underline{x} < \overline{x} < \underline{y} < \overline{y}\} \\ x(m)y & meets(x,y) = \{(x,y): \underline{x} < \overline{x} = \underline{y} < \overline{y}\} \\ x(o)y & overlaps(x,y) = \{(x,y): \underline{x} < \underline{y} < \overline{x} < \overline{y}\} \\ x(s)y & starts(x,y) = \{(x,y): \underline{x} = \underline{y} < \overline{x} < \overline{y}\} \\ x(f)y & finishes(x,y) = \{(x,y): \underline{y} < \underline{x} < \overline{x} = \overline{y}\} \\ x(d)y & during(x,y) = \{(x,y): \underline{y} < \underline{x} < \overline{x} < \overline{y}\} \\ x(e)y & equal(x,y) = \{(x,y): y = \underline{x} < \overline{x} = \overline{y}\} \end{array}$

Preliminaries (cont.)

- Semantics: FOHT Logic (cont.)
 - Satisfaction relation for a sentence ϕ depends on its structure, e.g.: $\alpha \land \beta : M, w \models \alpha$ and $M, w \models \beta$
 - $\alpha \rightarrow \beta$: for every $w' \ge w$: either $M, w' \nvDash \alpha$ or $M, w' \vDash \beta$
 - A closed formula ϕ has a model M if $M, h \models \phi$ and $M, t \models \phi$
- Equilibrium Models [Pearce2004]
 - Introduce minimal models to FOHT; $M = \langle D, H, T \rangle$ is an Equilibrium Model of Π if: (1) M is a total model, i.e., H = T (2) Π has no other model $\langle D, H', T \rangle$ with $H' \subset H$
- Quantified many-valued logic QN3 and QN5
 - Characterises model semantics using three/five-valued matrix of $\mathcal{T}_3 = \{-2,0,2\}$ and $\mathcal{T}_5 = \{-2, -1, 0, 1, 2\}$ $F \mid x \land y \mid x \lor y \mid \sim x \mid \neg y$
 - Interpretation function f_F for connectives F:
- Bijection between FOHT-models and QN₅-valuations: for an atom $p \in H$, resp., $\sim p \in H$ the valuation $\sigma(p)$ is 2, resp., -2

$$\frac{F | x \wedge y | x \vee y | \sim x | \neg x}{f_F \min(x, y) \max(x, y) | -1 \cdot x | \begin{cases} 2 & \text{if } x \leq 0 \\ -1 \cdot x & \text{otherwise} \end{cases}}$$

Temporal Extension of HT Logic

- Extends Σ to $\Sigma^t = \langle C, F, P, A \rangle$, where $A \subseteq Lit \times (\mathbb{Z} \times \mathbb{Z})$ (time interval associations)
- Temporal assignment $\tau_A : Lit \to (\mathbb{Z} \times \mathbb{Z}) \cup \{\mathbf{u}\}$, where is **u** undefined time instance
- Allow nested formulas, need interval coalescing, e.g., $(a \land \sim b)$ overlaps $(o_1 \lor o_2)$
- Two coalescing operators for $x = \tau_A(\alpha), y = \tau_A(\beta)$:

$\tau^*_A(\phi)$	is the	e recursive	application	of it
------------------	--------	-------------	-------------	-------

x, y satisfy	x(p)y	x(m)y	x(o)y
$coal_\wedge(x,y)$	u	$\mid \ [\overline{x},\overline{x}]$	$\mid [\underline{y}, \overline{x}] \mid$
$coal_ee(x,y)$	u	$\mid [\underline{x}, \overline{y}]$	$\mid [\underline{x},\overline{y}] \mid$

• Semantics: Characterised by QN₃/QN₅, define valuation for formula $\alpha \nu \beta$:

 $\sigma(\alpha \ \nu \ \beta) = \frac{1}{2} \cdot eval_{\nu}(\tau_{A}^{*}(\alpha), \tau_{A}^{*}(\beta)) \cdot \min(\sigma(\alpha), \sigma(\beta)), \text{ where } (a) \ eval_{\nu}(x, y) = 2 \text{ if } IA_{\nu}(x, y) \text{ holds} \\ (b) \ eval_{\nu}(x, y) = -2 \text{ if } IA_{\nu}(x, y) \text{ not holds} \\ (c) \ eval_{\nu}(x, y) = 0 \text{ if } x = \mathbf{u} \lor y = \mathbf{u} \end{cases}$

• Example: The formula $(x \lor y) \land ((x \ before \ z) \lor (y \ before \ z))$ with a temporal assignment $\{(x, [1,2]), y, [2,3]), (z, [4,5])\}$, has the following equilibrium models: $i_1 : (\emptyset, \{(x, [1,2])\}), \ i_2 : (\{(x, [1,2]), (z, [4,5])\}, \{(x, [1,2]), (z, [4,5])\}), i_3 : (\{(x, [1,2]), (y, [2,3]), (z, [4,5])\}, \{(x, [1,2]), (y, [2,3]), (z, [4,5])\})$

Temporal Tableau Calculus

- Calculus for three-valued logic N₃, can be extended to quantified and N₅ logic [Pearce2000]
- Total models calculated by applying tableau rules with labels that are set of sets over $\mathcal{T}_3 = \{-2, -0, 2\}$
- Non-temporal tableau \mathfrak{T} for a theory $\Pi = \{\phi_1, \dots, \phi_n\}$ starts with initial tableau $\{2\}: \phi_1 \dots \{2\}: \phi_n$
- Expansion rules with labels $S := \{\{2\}, \{0,2\}, \{-2,0\}, \{-2\}\}, S^- := \{\{-2,0\}, \{-2\}\}, \text{ and } S^+$:

$$rac{S^-:\phi\wedge\psi}{S^-:\phi\mid S^-:\psi} \qquad rac{S^+:\phi\wedge\psi}{S^+:\phi}
onumber \ S^+:\psi$$

- Temporal tableau system for Π with initial tableau and temp. assignments $\tau_A(\phi)$:
- Temporal expansion rules depending on $E := eval_{\nu}(\tau^*_{A'}(\phi), \tau^*_{A'}(\psi))$:

$$\frac{S:(\phi \nu \psi)_{\mathcal{A}'}}{S^+:(\phi)_{\tau^*_{\mathcal{A}'}(\phi)}} \quad \frac{1}{2} \cdot E \cdot S = S^+$$
$$S^+:(\psi)_{\tau^*_{\mathcal{A}'}(\psi)}$$

{2}: $(\phi_1)_{t_{\mathcal{A}}(\phi_1)}$ {2}: $(\phi_n)_{t_{\mathcal{A}}(\phi_n)}$

- A branch B of \mathfrak{T} is closed if for any formula ϕ , there are labels such $S_1 : \phi, S_2 : \phi$ with $S_1 \cap S_2 = \emptyset$
- Satisfiability (SAT): A branch B of 𝔅 is SAT if for every formula φ ∈ B there is σ(φ_i) ∈ S₁ ∩ … ∩ S_n, and 𝔅 is SAT if at least one branch of 𝔅 is SAT.

Sound- and Completeness of the Calculus

- Soundness of a tableau system: $\vdash_{N_3} (\Pi, A)$ implies $\models_{N_3} (\Pi, A)$
 - Establishing that SAT is a loop invariant of the tableau system [Fitting1996]
 - We assume that \mathfrak{T} is SAT and show that after applying an expansion rules, still SAT \rightarrow case distinctions
- Completeness of a tableau system: $\models_{N_3} (\Pi, A)$ implies $\vdash_{N_3} (\Pi, A)$
 - Make use of generic machinery of "tableau for many-value logics" [Hähnle1999]
 - Given an arbitrary $\phi = S : \gamma(\phi_1, ..., \phi_m)$, its (*sets-as-signs*) disjunctive normal form (DNF) representation is defined as $\psi = \bigvee_{i=1}^{l} C_i$ with $C_i = \bigwedge_{i=1}^{n_i} S_{i,j} : \psi_{i,j}$
 - Many-valued (mvs) Hintikka set Ω is a set of signed formulas such that: (1) it has no *closing* formula; (2) if $\phi \in \Omega$ and ψ is a *DNF* rep. of ϕ , then form some C_i it holds that $\{S_{i,1}: \psi_{i,1}, \ldots, S_{i,n_i}: \psi_{i,n_i}\} \subseteq \Omega$

 $rac{S:\gamma(\phi_1,\ldots,\phi_m)}{F_1\mid \cdots \mid F_l}.$

- Every mvs-Hintikka set Ω has a model [Hähnle1999]
- Our tableau rules have already the generic schema of Hähnle, where $F_i = C_i$:
- Temporal extension needed to be adapted to encoding of DNF representation: A temporal formula $(\alpha \ \nu \ \beta)$ can be viewed as a formula $S : \gamma_E(\alpha, \beta)$ depending on E and A

Conclusion/Discussion

- Prototypical Implementation to show feasibility:
 - Implemented in Python 3.7 with temporal CNF/DNF as input
 - Optimisation techniques not applied yet
 - Available on: https://github.com/patrik999/ EL-TempTableau
- Conclusion:
 - A new semantics, tableau calculus, and related solver for Temporal Behavioral Models
 - Arbitrary nesting of formulas, coalescing and undefined time instances
 - Initial steps towards an abduction-based temporal diagnosis framework
 - See our LPNRM'22 paper for more details
- Future/Ongoing work:
 - Add minimality checking to tableau system \rightarrow use of sub-tableau rules [Pearce2000]
 - Richer nesting in temporal formulas, several intervals in temporal assignments
 - Improved implementation + using optimization techniques
 - Encode directly in ASP and use one of the existing solvers (unravelling nesting)

THANKS FOR YOUR ATTENTION!

Case Study

 Case study of introductory example $\{2\}: (\neg a \lor b)_{\mathcal{A}_1} \checkmark$ • $(\neg a \lor b) \land \sim c \land ((a \land \sim c) \text{ overlaps } (o_1 \lor o_2)) \lor$ $\{-2\}: (c)_{A_2} \checkmark$ $((b \land c) overlaps (o_1 \lor o_2)) \land o_1 \land o_2$ $\{2\}: (((a \land \sim c) \circ (o_1 \lor o_2)) \lor ((b \land c) \circ (o_1 \lor o_2)))_{\mathcal{A}_3} \checkmark$ $\{2\}: (o_1)_{\mathcal{A}_4}$ • $A = \{(a, [1,4]), (b, \mathbf{u}), (c, [1,2]), \}$ $(\sim c, [3,5]), (o_1, [1,3]), (o_2, [3,5])\}$ $\{2\}: (o_2)_{\mathcal{A}_5}$ $\{2\}: (b)_{\mathcal{A}_{1,2}}$ $\{2\}: (\neg a)_{\mathcal{A}_{1,1}}$ $\{2\}: ((a \land \sim c) \circ (o_1 \lor o_2))_{\mathcal{A}_{3,1}} \checkmark \quad \{2\}: ((b \land c) \circ (o_1 \lor o_2)))_{\mathcal{A}_{3,2}} \quad \{2\}: ((a \land \sim c) \circ (o_1 \lor o_2))_{\mathcal{A}_{3,1}} \checkmark \quad \{2\}: ((b \land c) \circ (o_1 \lor o_2)))_{\mathcal{A}_{3,2}} \land (a \land a_2) \land (a \land a_2)$ $\{2\}: (a \wedge \sim c)_{\mathcal{A}_{3,1,1}} \checkmark$ $\{2\}: (a \wedge \sim c)_{\mathcal{A}_{3,1,1}} \checkmark$ Х Х $\{2\}: (o_1 \lor o_2)_{\mathcal{A}_{3,1,2}} \checkmark$ $\{2\}: (o_1 \vee o_2)_{\mathcal{A}_{3,1,2}}$ • Evaluation: $\{2\}: (o_1)_{\mathcal{A}_{3,1,2,1}} \qquad \{2\}: (o_2)_{\mathcal{A}_{3,1,2,2}}$ $\{2\}: (a)_{\mathcal{A}_{3,1,1,1}}$ Two models derived from open $\{-2\}: (c)_{\mathcal{A}_{3,1,1,2}}$ $\{2\}: (a)_{\mathcal{A}_{3,1,1,1}}$ $\{2\}: (a)_{\mathcal{A}_{3,1,1,1}}$ branches $\{-2\}: (c)_{\mathcal{A}_{3,1,1,2}} \quad \{-2\}: (c)_{\mathcal{A}_{3,1,1,2}}$ Х Runtime, below 1s but not comparable to sota tableau solvers

References

Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

Brusoni, V., Console, L., Terenziani, P., Dupre´, D.T.: A spectrum of definitions for temporal model-based diagnosis. Artif. Intell. 102(1), 39–79 (1998)

Hähnle, R.: Tableaux for many-valued logics. In: D'A gostino et al. [7], pp. 529–580 (1999)

Heyting, A.: Die Formalen Regeln der lintuitionistischen Logik, pp. 42–56. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse pp (1930)

Pearce, D., de Guzman, I.P., Valverde, A.: A tableau calculus for equilibrium entailment. In: Dyckhoff, R. (ed.) Automated Reasoning with Analytic Tableaux and Related Methods, pp. 352–367. Springer, Heidelberg (2000)

Pearce, D., Valverde, A.:Towardsa first order equilibrium logic for non monotonic reasoning. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 147–160. Springer, Heidelberg (2004)