Ingenuity for life

A Qualitative Temporal Extension of Here-and-There Logic

Thomas Eiter ${ }^{1}$, Patrik Schneider ${ }^{1,2}$

(1) Institute of Logic \& Computation, TU Wien, Austria
(2) Siemens T DAI, Germany

Amsterdam, 6th of December 2022

Motivation

- Traffic Congestions

- Large problem in big cities worldwide
- Estimate by WEF, cost for US economy: $\$ 87$ billion (2018) [Fleming, 2019]
- Microscopic traffic simulations:
- Used to simulate traffic, e.g., SUMO
- Mesoscopic Traffic Flow Model (MTF):

Traffic in Singapore [The Strait Times, 2016]

MTF of two intersections [Eiter et al., 2020]

- Traffic diagnosis to find "faulty" patterns such as inefficient signal plans or accidents

Motivation (cont.)

- Horizont: Model-based diagnosis in a temporal setting applied to traffic diagnosis
- Starting point: Temporal Behavioral Models [Console1997]:
- Temporal behavior formulae and integrity constraints that describe causal relation between explanations and observations under temporal constraints, i.e., using Allen's Interval Algebra
- Example:

$$
\text { water_ret } \left.\left(T_{1}\right) \text {, therapy(absent) explains blood_vol(high, } T_{2}\right)\left\{T_{1}(\text { before }) T_{2}\right\}
$$

- The original syntax is not well suited for complex causal relations:
- Temporal relations could be combined with atomic formulas
- Nested temporal formulas and negation desired
- "explains" could be replaced with \leftarrow, \rightarrow, or \wedge depending on the reasoning task, .e.g., deduction, abduction, or consistency checking

Motivating Example

$$
(a \vee b) \wedge\left((a \wedge \sim c) \text { overlaps }\left(o_{1} \vee o_{2}\right)\right) \vee\left((b \wedge c) \text { overlaps }\left(o_{1} \vee o_{2}\right)\right) \wedge o_{1} \wedge o_{2}
$$

Two observations o_{1}, o_{2} of low traffic caused by either a (normal) congestion a or by an accident b, while either roadworks c occurs or does not occur, denoted by $\sim c$ on overlapping time intervals

Preliminaries

- Allen's Interval Algebra (IA) [Allen1983]
- Algebra/calculus to express temporal constraints
- Domain is set of intervals defined over the linear order of \mathbb{T}

$$
\begin{aligned}
& x(p) y \text { before }(x, y)=\{(x, y): \underline{x}<\bar{x}<\underline{y}<\bar{y}\} \\
& x(m) y \text { meets }(x, y)=\{(x, y): \underline{x}<\bar{x}=\underline{y}<\bar{y}\} \\
& x(o) y \text { overlaps }(x, y)=\{(x, y): \underline{x}<\underline{y}<\bar{x}<\bar{y}\} \\
& x(s) y \text { starts }(x, y)=\{(x, y): \underline{x}=\underline{y}<\bar{x}<\bar{y}\} \\
& x(f) y \text { finishes }(x, y)=\{(x, y): \underline{y}<\underline{x}<\bar{x}=\bar{y}\} \\
& x(d) y \text { during }(x, y)=\{(x, y): \underline{y}<\underline{x}<\bar{x}<\bar{y}\} \\
& x(e) y \quad \text { equal }(x, y)=\{(x, y): \underline{y}=\underline{x}<\bar{x}=\bar{y}\}
\end{aligned}
$$

- Syntax: First-Order Here-and-There (FOHT) Logic [Heyting1930]
- FO language: $\Sigma=\langle C, F, P\rangle$, constants/functions/predicates, (ground) terms, atoms, and literals are defined as usual
- Two negations: \sim and \neg (strong and weak negation)

- Semantics: FOHT Logic

- FOHT-model $M=\left\langle D_{h}, H, D_{t}, T\right\rangle$, where $C \subseteq D_{h} \subseteq D_{t}$ and $H \subseteq T \subseteq$ Lit such that there are no conflicting literals in T
- Simpler with constant domain assumption $D_{t}=D_{h}, \mathrm{FOHT}_{\mathrm{c}}$-model: $M=\langle D, H, T\rangle$
- Satisfaction relation: $M, w \vDash \phi$ for $w \in\{h, t\}$, where we have a totally ordering of worlds, i.e., $h \leq h, h \leq t, t \leq t$

Preliminaries (cont.)

- Semantics: FOHT Logic (cont.)
- Satisfaction relation for a sentence ϕ depends on its structure, e.g.:
$\alpha \wedge \beta: M, w \vDash \alpha$ and $M, w \vDash \beta$
$\alpha \rightarrow \beta$: for every $w^{\prime} \geq w$: either $M, w^{\prime} \vDash \alpha$ or $M, w^{\prime} \vDash \beta$
- A closed formula ϕ has a model M if $M, h \vDash \phi$ and $M, t \vDash \phi$
- Equilibrium Models [Pearce2004]
- Introduce minimal models to FOHT; $M=\langle D, H, T\rangle$ is an Equilibrium Model of Π if:
(1) M is a total model, i.e., $H=T$ (2) Π has no other model $\left\langle D, H^{\prime}, T\right\rangle$ with $H^{\prime} \subset H$
- Quantified many-valued logic QN_{3} and QN_{5}
- Characterises model semantics using three/five-valued matrix of $\mathscr{T}_{3}=\{-2,0,2\}$ and

$$
\mathscr{T}_{5}=\{-2,-1,0,1,2\}
$$

- Interpretation function f_{F} for connectives F :
- Bijection between FOHT-models

F	$x \wedge y$	$x \vee y$	$\sim x$	$\neg x$
f_{F}	$\min (x, y)$	$\max (x, y)$	$-1 \cdot x$	$\begin{cases}2 & \text { if } x \leq 0 \\ -1 \cdot x & \text { otherwise }\end{cases}$

for an atom $p \in H$, resp., $\sim p \in H$ the valuation $\sigma(p)$ is 2 , resp., -2

Temporal Extension of HT Logic

- Extends Σ to $\Sigma^{t}=\langle C, F, P, \mathbf{A}\rangle$, where $\mathbf{A} \subseteq$ Lit $\times(\mathbb{Z} \times \mathbb{Z})$ (time interval associations)
- Temporal assignment $\tau_{A}:$ Lit $\rightarrow(\mathbb{Z} \times \mathbb{Z}) \cup\{\mathbf{u}\}$, where is \mathbf{u} undefined time instance
- Allow nested formulas, need interval coalescing, e.g., $(a \wedge \sim b)$ overlaps $\left(o_{1} \vee o_{2}\right)$
- Two coalescing operators for $x=\tau_{A}(\alpha), y=\tau_{A}(\beta)$:
$\tau_{A}^{*}(\phi)$ is the recursive application of it

x, y satisfy	$x(p) y\|x(m) y\| x(o) y \mid$	
$\operatorname{coal}_{\wedge}(x, y) \mid$	\mathbf{u}	$\|[\bar{x}, \bar{x}]\|[\underline{y}, \bar{x}] \mid$
$\operatorname{coal}_{\vee}(x, y) \mid$	\mathbf{u}	$\|[\underline{x}, \bar{y}]\|[\underline{x}, \bar{y}] \mid$

- Semantics: Characterised by $\mathbf{Q N}_{3} / \mathbf{Q N} 5$, define valuation for formula $\alpha \nu \beta$:

$$
\sigma(\alpha \nu \beta)=\frac{1}{2} \cdot \operatorname{eval}_{\nu}\left(\tau_{A}^{*}(\alpha), \tau_{A}^{*}(\beta)\right) \cdot \min (\sigma(\alpha), \sigma(\beta)), \text { where } \begin{aligned}
& \text { (a) } \operatorname{eval}_{\nu}(x, y)=2 \text { if } I A_{\nu}(x, y) \text { holds } \\
& \text { (b) } \operatorname{eval}_{\nu}(x, y)=-2 \text { if } I A_{\nu}(x, y) \text { not holds } \\
& \text { (c) } \operatorname{eval}_{\nu}(x, y)=0 \text { if } x=\mathbf{u} \vee y=\mathbf{u}
\end{aligned}
$$

- Example: The formula $(x \vee y) \wedge((x$ before $z) \vee(y$ before $z))$ with a temporal assignment $\{(x,[1,2]), y,[2,3]),(z,[4,5])\}$, has the following equilibrium models:

$$
\begin{aligned}
& i_{1}:(\varnothing,\{(x,[1,2])\}), \quad i_{2}:(\{(x,[1,2]),(z,[4,5])\},\{(x,[1,2]),(z,[4,5])\}), \\
& i_{3}:(\{(x,[1,2]),(y,[2,3]),(z,[4,5])\},\{(x,[1,2]),(y,[2,3]),(z,[4,5])\})
\end{aligned}
$$

Temporal Tableau Calculus

- Calculus for three-valued logic N_{3}, can be extended to quantified and N_{5} logic [Pearce2000]
- Total models calculated by applying tableau rules with labels that are set of sets over $\mathscr{T}_{3}=\{-2,-0,2\}$
- Non-temporal tableau \mathfrak{T} for a theory $\Pi=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ starts with initial tableau $\{2\}: \phi_{1} \ldots\{2\}: \phi_{n}$
- Expansion rules with labels $S:=\{\{2\},\{0,2\},\{-2,0\},\{-2\}\}, S^{-}:=\{\{-2,0\},\{-2\}\}$, and S^{+}:

$$
\frac{S^{-}: \phi \wedge \psi}{S^{-}: \phi \mid S^{-}: \psi} \quad \frac{S^{+}: \phi \wedge \psi}{S^{+}: \phi}
$$

- Temporal tableau system for Π with initial tableau and temp. assignments $\tau_{A}(\phi)$:
$\{2\}:\left(\phi_{1}\right)_{t_{\mathcal{A}}\left(\phi_{1}\right)}$
- Temporal expansion rules depending on $E:=\operatorname{eval}_{\nu}\left(\tau_{A^{\prime}}^{*}(\phi), \tau_{A^{\prime}}^{*}(\psi)\right)$:

$$
\begin{aligned}
& \frac{S:(\phi \nu \psi)_{\mathcal{A}^{\prime}}}{S^{+}:(\phi)_{\tau_{\mathcal{A}^{\prime}}^{*}(\phi)}} \quad \frac{1}{2} \cdot E \cdot S=S^{+}, \quad \\
& S^{+}:(\psi)_{\tau_{\mathcal{A}^{\prime}}^{*}(\psi)}
\end{aligned} \quad
$$

- A branch B of \mathfrak{I} is closed if for any formula ϕ, there are labels such $S_{1}: \phi, S_{2}: \phi$ with $S_{1} \cap S_{2}=\varnothing$
- Satisfiability (SAT): A branch B of \mathfrak{T} is SAT if for every formula $\phi \in B$ there is $\sigma\left(\phi_{i}\right) \in S_{1} \cap \cdots \cap S_{n}$, and \mathfrak{T} is SAT if at least one branch of \mathfrak{T} is SAT.

Sound- and Completeness of the Calculus

- Soundness of a tableau system: $\vdash_{N_{3}}(\Pi, A)$ implies $F_{N_{3}}(\Pi, A)$
- Establishing that SAT is a loop invariant of the tableau system [Fitting1996]
- We assume that \mathfrak{T} is SAT and show that after applying an expansion rules, still SAT \rightarrow case distinctions
- Completeness of a tableau system: $\vDash_{N_{3}}(\Pi, A)$ implies $\vdash_{N_{3}}(\Pi, A)$
- Make use of generic machinery of "tableau for many-value logics" [Hähnle1999]
- Given an arbitrary $\phi=S: \gamma\left(\phi_{1}, \ldots, \phi_{m}\right)$, its (sets-as-signs) disjunctive normal form (DNF) representation is defined as $\psi=\vee_{i=1}^{l} C_{i}$ with $C_{i}=\wedge_{j=1}^{n_{i}} S_{i, j}: \psi_{i, j}$
- Many-valued (mvs) Hintikka set Ω is a set of signed formulas such that: (1) it has no closing formula; (2) if $\phi \in \Omega$ and ψ is a DNF rep. of ϕ, then form some C_{i} it holds that $\left\{S_{i, 1}: \psi_{i, 1}, \ldots, S_{i, n_{i}}: \psi_{i, n_{i}}\right\} \subseteq \Omega$
- Every mvs-Hintikka set Ω has a model [Hähnle 1999]
- Our tableau rules have already the generic schema of Hähnle, where $F_{i}=C_{i}$:

$$
\frac{S: \gamma\left(\phi_{1}, \ldots, \phi_{m}\right)}{F_{1}|\cdots| F_{l} .}
$$

- Temporal extension needed to be adapted to encoding of DNF representation: A temporal formula $\left(\alpha \nu \beta\right.$) can be viewed as a formula $S: \gamma_{E}(\alpha, \beta)$ depending on E and A

Conclusion/Discussion

- Prototypical Implementation to show feasibility:
- Implemented in Python 3.7 with temporal CNF/DNF as input
- Optimisation techniques not applied yet
- Available on: https://github.com/patrik999/ EL-TempTableau
- Conclusion:
- A new semantics, tableau calculus, and related solver for Temporal Behavioral Models
- Arbitrary nesting of formulas, coalescing and undefined time instances
- Initial steps towards an abduction-based temporal diagnosis framework
- See our LPNRM'22 paper for more details
- Future/Ongoing work:
- Add minimality checking to tableau system \rightarrow use of sub-tableau rules [Pearce2000]
- Richer nesting in temporal formulas, several intervals in temporal assignments
- Improved implementation + using optimization techniques
- Encode directly in ASP and use one of the existing solvers (unravelling nesting)

Case Study

- Case study of introductory example
- $(\neg a \vee b) \wedge \sim c \wedge\left((a \wedge \sim c)\right.$ overlaps $\left.\left(o_{1} \vee o_{2}\right)\right) \vee$ $\left((b \wedge c)\right.$ overlaps $\left.\left(o_{1} \vee o_{2}\right)\right) \wedge o_{1} \wedge o_{2}$
- $A=\{(a,[1,4]),(b, \mathbf{u}),(c,[1,2])$, $\left.(\sim c,[3,5]),\left(o_{1},[1,3]\right),\left(o_{2},[3,5]\right)\right\}$
$\{2\}:\left(\left((a \wedge \sim c) \circ\left(o_{1} \vee o_{2}\right)\right) \vee\left((b \wedge c) \circ\left(o_{1} \vee o_{2}\right)\right)\right)_{\mathcal{A}_{3}} \checkmark$

```
\(\{2\}:(\neg a \vee b)_{\mathcal{A}_{1}} \checkmark\)
```



```
\(\{-2\}:(c)_{\mathcal{A}_{2}} \checkmark\)
```

$2\}:\left(o_{1}\right)_{\mathcal{A}_{4}}$
|
\{2\}

- Evaluation:
- Two models derived from open branches
- Runtime, below 1s but not comparable to sota tableau solvers

References

Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832-843 (1983)
Brusoni, V., Console, L., Terenziani, P., Dupre', D.T.: A spectrum of definitions for temporal model-based diagnosis. Artif. Intell. 102(1), 39-79 (1998)

Hähnle, R.: Tableaux for many-valued logics. In: D'A gostino et al. [7], pp. 529-580 (1999)
Heyting, A.: Die Formalen Regeln der lintuitionistischen Logik, pp. 42-56. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse pp (1930)

Pearce, D., de Guzman, I.P., Valverde, A.: A tableau calculus for equilibrium entailment. In: Dyckhoff, R. (ed.) Automated Reasoning with Analytic Tableaux and Related Methods, pp. 352-367. Springer, Heidelberg (2000)

Pearce, D., Valverde, A.:Towardsa first order equilibrium logic for non monotonic reasoning. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 147-160. Springer, Heidelberg (2004)

