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Who is KNoWS?
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Overview
● Maarten

○ Incremental Query Aggregators in SOLID
● Kushagra

○ Aggregating Sensitive Health Data streams in SOLID
● Mathijs

○ Towards a Unifying Logic for Linked Data Streams
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Incremental Query 
Aggregators in SOLID
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SOLID
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Why SOLID?
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The SOLID pod
● Data vault
● Knowledge graph
● LDP: Fragmented => Files
● Add semantics to data
● RDF
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RDF
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<http://example/resource/tokyo>
<http://example/resource/tokyo>

<http://example/property/area>
<http://example/property/country>

“2188km²” .
<http://example/resource/japan> .

http://example/resource/tokyo
http://example/resource/tokyo
http://example/property/area
http://example/resource/tokyo
http://example/property/area
http://example/property/area
http://example/resource/tokyo
http://example/property/area
http://example/resource/tokyo


Incremental Query 
Aggregators
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Problem with decentralized ecosystems
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Problem with decentralized ecosystems
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Why query aggregators?
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Query Aggregator

Static queries
Continuous query evaluation
Materialized view



Query aggregators: Current state

POD

Agent

Query 
Aggregator

Triples (no updates)

Query reevaluated
In memory

Query results (JSON)



Query aggregators: Future work

POD

Agent

Query 
Aggregator

Universal ontology for result/updates
Description of data

Incremental query evaluation (additions/deletions)
Schema alignment (reasoning)
Caching intermediate results (save query state to disk)



Conclusion
● Decentralized ecosystems => slow to query
● Query aggregators

○ Incremental query evaluation
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Solid is amazing for personal data, but what about streams?
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Wearables with SOLID : A use-case

Wearables produce sensitive data 
streams.

Makes sense to store them with 
SOLID.
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To complete the circle to accomplish this,
We will need both parts of the circle.

4



Storing Streams in Solid.
Linked Data Event Streams (LDES) 
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Storing Streams in Solid.
Solid is currently file based.
Solid uses LDES with LDP (Linked Data Platform)
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Aggregating Streams with SOLID.
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Let’s explain this image!



Local Aggregations
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Handling the Stream.
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  https://github.com/pbonte/roxi



Multipod Aggregators
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Future Steps
My research will focus on,

- an efficient optimal aggregator.
- scalability.
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Other challenges our lab is focussing,
- synchronization of the pods.
- specifying policies for aggregators.
- dealing with contradicting data.
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TOWARDS A UNIFYING LOGIC FOR
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OUR CONTEXT

Reasoning

Temporal Data

Stream Reasoning

SOLID Pods

Decentralized Reasoning

Decentralized Stream Reasoning

⇒ What logical framework can accommodate these complex needs?
*RDF has no negation, so preferably a framework without negation
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WHY ONE LOGIC FRAMEWORK FOR ALL

Interoperability!

Different Pods ⇒ Different Ontologies

Different Agents ⇒ Different Querying & Reasoning

Logic to mediate between different
languages/assumptions/. . .
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EXPRESSING TIME IN LOGIC
SOME SEMANTICS

Point-based

"My ALARM goes of until I hit SNOOZE"

t SNOOZE

ALARM

ALARM until SNOOZE

Interval-based

"My alarm stays ACTIVE until I hit STOP after it
starts ringing again"

t STOP

ACTIVE

ACTIVE until[5,6] STOP
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TEMPORAL OPERATORS IN TEMPORAL REASONING
POINTWISE SEMANTICS

since and until operators S ,U

+⋄ ψ ≡ ⊤Uψ

‘once’ operators −⋄,+⋄
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(
+⋄ (¬ψ)
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FUTURE LEADS AND AMBITIONS

Build logic framework for SR without negation

Decentralized Reasoning

Combine Stream and Decentralized Reasoning frameworks
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