
Reasoning in SOLID
Kushagra Singh Bisen & Maarten Vandenbrande & Mathijs van Noort

DEPARTMENT INTEC
RESEARCH GROUP IDLab

Who is KNoWS?

2

Overview
● Maarten

○ Incremental Query Aggregators in SOLID
● Kushagra

○ Aggregating Sensitive Health Data streams in SOLID
● Mathijs

○ Towards a Unifying Logic for Linked Data Streams

3

Incremental Query
Aggregators in SOLID

4

SOLID
5

Why SOLID?

6

single use
API’s

duplicated
efforts

data hoarding
outdated &
incomplete fully interoperable

standards

The SOLID pod
● Data vault
● Knowledge graph
● LDP: Fragmented => Files
● Add semantics to data
● RDF

7

C1

RDF

C2

RDF

RDF

RDF

8

<http://example/resource/tokyo>
<http://example/resource/tokyo>

<http://example/property/area>
<http://example/property/country>

“2188km²” .
<http://example/resource/japan> .

http://example/resource/tokyo
http://example/resource/tokyo
http://example/property/area
http://example/resource/tokyo
http://example/property/area
http://example/property/area
http://example/resource/tokyo
http://example/property/area
http://example/resource/tokyo

Incremental Query
Aggregators

9

Problem with decentralized ecosystems

10

POD
4

POD
5

POD
3

POD
6

POD
2

Agent

SELECT ?name ?cityLocation FROM {
?me :knows ?friend .
?friend :name ?name .
?friend :livesIn ?city .
?city :hasLocation ?cityLocation .

}

POD
1

city
database

friend 1 friend 2 friend 3 friend 4

my pod

Problem with decentralized ecosystems

11

POD
4

POD
5

POD
3

POD
6

POD
2

Agent

SELECT ?name ?cityLocation FROM {
?me :knows ?friend .
?friend :name ?name .
?friend :livesIn ?city .
?city :hasLocation ?cityLocation .

}

POD
1

city
database

friend 1 friend 2 friend 3 friend 4

my pod

Problem with decentralized ecosystems

12

POD
4

POD
5

POD
3

POD
6

POD
2

Agent

SELECT ?name ?cityLocation FROM {
?me :knows ?friend .
?friend :name ?name .
?friend :livesIn ?city .
?city :hasLocation ?cityLocation .

}

POD
1

city
database

friend 1 friend 2 friend 3 friend 4

my pod

Problem with decentralized ecosystems

13

POD
4

POD
5

POD
3

POD
6

POD
2

Agent

SELECT ?name ?cityLocation FROM {
?me :knows ?friend .
?friend :name ?name .
?friend :livesIn ?city .
?city :hasLocation ?cityLocation .

}

POD
1

city
database

friend 1 friend 2 friend 3 friend 4

my pod

link traversal => slow

Why query aggregators?

14

POD
4

POD
5

POD
3

POD
6

POD
2

Agent

POD
1

city
database

friend 1 friend 2 friend 3 friend 4

my pod

Query Aggregator

Static queries
Continuous query evaluation
Materialized view

Query aggregators: Current state

POD

Agent

Query
Aggregator

Triples (no updates)

Query reevaluated
In memory

Query results (JSON)

Query aggregators: Future work

POD

Agent

Query
Aggregator

Universal ontology for result/updates
Description of data

Incremental query evaluation (additions/deletions)
Schema alignment (reasoning)
Caching intermediate results (save query state to disk)

Conclusion
● Decentralized ecosystems => slow to query
● Query aggregators

○ Incremental query evaluation

17

Maarten Vandenbrande
PhD Researcher
IDLab

E maarten.vandenbrande@ugent.be
M +32 494335741

www.ugent.be

Aggregating Sensitive Health Data Streams in SOLID
Kushagra Singh Bisen, Pieter Bonte and Femke Ongenae

DEPARTMENT INTEC
RESEARCH GROUP IDLAB

Stream Reasoning Workshop 2022, Amsterdam

Solid is amazing for personal data, but what about streams?

2

Wearables with SOLID : A use-case

Wearables produce sensitive data
streams.

Makes sense to store them with
SOLID.

3

To complete the circle to accomplish this,
We will need both parts of the circle.

4

Storing Streams in Solid.
Linked Data Event Streams (LDES)

5

Storing Streams in Solid.
Solid is currently file based.
Solid uses LDES with LDP (Linked Data Platform)

6

Aggregating Streams with SOLID.

7

Let’s explain this image!

Local Aggregations

8

Handling the Stream.

9

 https://github.com/pbonte/roxi

Multipod Aggregators

10

Future Steps
My research will focus on,

- an efficient optimal aggregator.
- scalability.

11

Other challenges our lab is focussing,
- synchronization of the pods.
- specifying policies for aggregators.
- dealing with contradicting data.

Kushagra Singh Bisen
PhD researcher
Internet Technology and Data Science Lab

E: kushagrasingh.bisen@ugent.be

argahsuknesib.github.io

 @argahsuknesib

STREAM REASONING WORKSHOP 2022 — AMSTERDAM

TOWARDS A UNIFYING LOGIC FOR
LINKED DATA STREAMS
Mathijs van Noort — Mathijs.vanNoort@UGent.be

OUR CONTEXT

Reasoning

Temporal Data

Stream Reasoning

SOLID Pods

Decentralized Reasoning

Decentralized Stream Reasoning

⇒ What logical framework can accommodate these complex needs?
*RDF has no negation, so preferably a framework without negation

OUR CONTEXT

Reasoning

Temporal Data

Stream Reasoning

SOLID Pods

Decentralized Reasoning

Decentralized Stream Reasoning

⇒ What logical framework can accommodate these complex needs?
*RDF has no negation, so preferably a framework without negation

OUR CONTEXT

Reasoning

Temporal Data

Stream Reasoning

SOLID Pods

Decentralized Reasoning

Decentralized Stream Reasoning

⇒ What logical framework can accommodate these complex needs?
*RDF has no negation, so preferably a framework without negation

OUR CONTEXT

Reasoning

Temporal Data

Stream Reasoning

SOLID Pods

Decentralized Reasoning

Decentralized Stream Reasoning

⇒ What logical framework can accommodate these complex needs?
*RDF has no negation, so preferably a framework without negation

OUR CONTEXT

Reasoning

Temporal Data

Stream Reasoning

SOLID Pods

Decentralized Reasoning

Decentralized Stream Reasoning

⇒ What logical framework can accommodate these complex needs?
*RDF has no negation, so preferably a framework without negation

OUR CONTEXT

Reasoning

Temporal Data

Stream Reasoning

SOLID Pods

Decentralized Reasoning

Decentralized Stream Reasoning

⇒ What logical framework can accommodate these complex needs?
*RDF has no negation, so preferably a framework without negation

OUR CONTEXT

Reasoning

Temporal Data

Stream Reasoning

SOLID Pods

Decentralized Reasoning

Decentralized Stream Reasoning

⇒ What logical framework can accommodate these complex needs?

*RDF has no negation, so preferably a framework without negation

OUR CONTEXT

Reasoning

Temporal Data

Stream Reasoning

SOLID Pods

Decentralized Reasoning

Decentralized Stream Reasoning

⇒ What logical framework can accommodate these complex needs?
*RDF has no negation, so preferably a framework without negation

WHY ONE LOGIC FRAMEWORK FOR ALL

Interoperability!

Different Pods ⇒ Different Ontologies

Different Agents ⇒ Different Querying & Reasoning

Logic to mediate between different
languages/assumptions/. . .

Logic

Querying

Ontologies Reasoning

WHY ONE LOGIC FRAMEWORK FOR ALL

Interoperability!

Different Pods ⇒ Different Ontologies

Different Agents ⇒ Different Querying & Reasoning

Logic to mediate between different
languages/assumptions/. . .

Logic

Querying

Ontologies Reasoning

WHY ONE LOGIC FRAMEWORK FOR ALL

Interoperability!

Different Pods ⇒ Different Ontologies

Different Agents ⇒ Different Querying & Reasoning

Logic to mediate between different
languages/assumptions/. . .

Logic

Querying

Ontologies Reasoning

WHY ONE LOGIC FRAMEWORK FOR ALL

Interoperability!

Different Pods ⇒ Different Ontologies

Different Agents ⇒ Different Querying & Reasoning

Logic to mediate between different
languages/assumptions/. . .

Logic

Querying

Ontologies Reasoning

EXPRESSING TIME IN LOGIC
SOME SEMANTICS

Point-based

"My ALARM goes of until I hit SNOOZE"

t SNOOZE

ALARM

ALARM until SNOOZE

Interval-based

"My alarm stays ACTIVE until I hit STOP after it
starts ringing again"

t STOP

ACTIVE

ACTIVE until[5,6] STOP

EXPRESSING TIME IN LOGIC
SOME SEMANTICS

Point-based

"My ALARM goes of until I hit SNOOZE"

t SNOOZE

ALARM

ALARM until SNOOZE

Interval-based

"My alarm stays ACTIVE until I hit STOP after it
starts ringing again"

t STOP

ACTIVE

ACTIVE until[5,6] STOP

EXPRESSING TIME IN LOGIC
SOME SEMANTICS

Point-based

"My ALARM goes of until I hit SNOOZE"

t SNOOZE

ALARM

ALARM until SNOOZE

Interval-based

"My alarm stays ACTIVE until I hit STOP after it
starts ringing again"

t STOP

ACTIVE

ACTIVE until[5,6] STOP

EXPRESSING TIME IN LOGIC
SOME SEMANTICS

Point-based

"My ALARM goes of until I hit SNOOZE"

t SNOOZE

ALARM

ALARM until SNOOZE

Interval-based

"My alarm stays ACTIVE until I hit STOP after it
starts ringing again"

t STOP

ACTIVE

ACTIVE until[5,6] STOP

TEMPORAL OPERATORS IN TEMPORAL REASONING
POINTWISE SEMANTICS

since and until operators S ,U

+⋄ ψ ≡ ⊤Uψ

‘once’ operators −⋄,+⋄

⊞ψ ≡ ¬
(
+⋄ (¬ψ)

)

⊞ψ ≡ ψU⊥

‘always’ operators ⊟,⊞

TEMPORAL OPERATORS IN TEMPORAL REASONING
POINTWISE SEMANTICS

since and until operators S ,U

+⋄ ψ ≡ ⊤Uψ

‘once’ operators −⋄,+⋄

⊞ψ ≡ ¬
(
+⋄ (¬ψ)

) ⊞ψ ≡ ψU⊥

‘always’ operators ⊟,⊞

TEMPORAL OPERATORS IN TEMPORAL REASONING
INTERVAL-BASED SEMANTICS

since and until operators SI ,UI

+⋄ I ψ ≡ ⊤UIψ

‘once’ operators −⋄ I ,+⋄ I

⊞Iψ ≡ ¬
(
+⋄ I (¬ψ)

)

⊞Iψ ≡+⋄[i1,i1]

(
ψU[i2−i1,i2−i1]⊤

)

‘always’ operators ⊟I ,⊞I

TEMPORAL OPERATORS IN TEMPORAL REASONING
INTERVAL-BASED SEMANTICS

since and until operators SI ,UI

+⋄ I ψ ≡ ⊤UIψ

‘once’ operators −⋄ I ,+⋄ I

⊞Iψ ≡ ¬
(
+⋄ I (¬ψ)

)
⊞Iψ ≡+⋄[i1,i1]

(
ψU[i2−i1,i2−i1]⊤

)
‘always’ operators ⊟I ,⊞I

FUTURE LEADS AND AMBITIONS

Build logic framework for SR without negation

Decentralized Reasoning

Combine Stream and Decentralized Reasoning frameworks

MATHIJS VAN NOORT
PHD RESEARCHER

MATHIJS.VANNOORT@UGENT.BE

ï MATHIJS VAN NOORT

� @MATHIJSNOORT

� GHENT UNIVERSITY – INTERNET TECHNOLOGY AND DATA SCIENCE LAB

