
TensAIR: Online Learning from Data Streams via
Asynchronous Iterative Routing

Mauro Dalle Lucca Tosi
Department of Computer Science

University of Luxembourg
Esch-sur-Alzette, Luxembourg

0000-0002-0218-2413

Vinu E. Venugopal
ScaDS Lab

IIIT Bangalore
Karnataka, India

0000-0003-4429-9932

Martin Theobald
Department of Computer Science

University of Luxembourg
Esch-sur-Alzette, Luxembourg

0000-0003-4067-7609

Abstract—Online learning (OL) from data streams is an emerg-
ing area of research which encompasses numerous challenges
from stream processing, machine learning, and networking.
Recent extensions of stream-processing platforms, such as Apache
Kafka and Flink, already provide basic extensions for the training
of neural networks in a stream-processing pipeline. However,
these extensions are not scalable and flexible enough for many
real-world use-cases, since they do not integrate the neural-
network libraries as a first-class citizen into their architectures.

In this paper, we present TensAIR, which provides an end-
to-end dataflow engine for OL from data streams via a protocol
to which we refer as asynchronous iterative routing. TensAIR
supports the common dataflow operators, such as Map, Reduce,
Join, and has been augmented by the data-parallel OL functions
train and predict. These belong to the new Model operator,
in which an initial TensorFlow model (either freshly initial-
ized or pre-trained) is replicated among multiple decentralized
worker nodes. Our decentralized architecture allows TensAIR
to efficiently shard incoming data batches across the distributed
model replicas, which in turn trigger the model updates via a
form of asynchronous stochastic gradient descent. We empirically
demonstrate that TensAIR achieves a nearly linear scale-out
in terms of (1) the number of worker nodes deployed in the
network, and (2) the throughput at which the data batches
arrive at the dataflow operators. We exemplify the versatility
of TensAIR by investigating both sparse (Word2Vec) and dense
(CIFAR-10) use-cases, for which we are able to demonstrate very
significant performance improvements in comparison to Kafka,
Flink, and the Horovod distributed learning framework recently
developed by Uber. We also demonstrate the magnitude of these
improvements by depicting the possibility of real-time concept
drift adaptation of a sentiment analysis model trained over a
Twitter stream.

Index Terms—Online Learning, Neural Networks, Asyn-
chronous Stream Processing, Asynchronous Stochastic Gradient
Descent

I. INTRODUCTION

Machine learning (ML) has become ubiquitous in mod-
ern data-analytics and decision-making tasks. Current ML
solutions demand a considerable amount of training time,
which usually renders it infeasible to retrain the entire ML
machinery “from scratch” whenever new data arrives. Online
learning (OL) is a branch of ML that studies solutions to time-
sensitive problems which demand real-time answers based on
fractions of data received in the form of data streams [1].
Moreover, a common characteristic of data streams is the

presence of concept drifts [2], i.e., changes in the statistical
properties among the incoming data objects over time. To
adapt to concept drifts, one may rely on either passive or
active adaptation strategies [3]. The passive strategy updates
the trained model indefinitely, with no regard to the actual
presence of concept drifts. Active drift adaptation strategies,
on the other hand, only adapt the model when a concept
drift has been explicitly identified. In OL, a passive strategy
(which is the default strategy we consider in this work) can be
seen as the computationally more demanding approach, since
the buffering capabilities of a stream-processing engine are
limited, such that the model needs to be constantly kept up-
to-date with the incoming data batches.

Due to the intrinsic characteristics of OL, especially with
respect to real-world applications, it is not feasible to depend
on solutions that spend an undue amount of time on retraining,
nor on those that cannot adapt to concept drifts. Therefore,
until recently, complex OL problems could not rely on robust
solutions common to other ML problems, like those involving
Artificial Neural Networks (ANNs). Training in OL and ANNs
is remarkably similar and yet is not exactly the same. Both
are trained on incremental steps but differ with respect to the
source and distribution of the training samples. ANNs sample
their training data repeatedly (using so-called “epochs”) from
a pre-defined dataset with a fixed data distribution [4]. OL
approaches, on the other hand, inherently need to sample data
from an unbounded data stream with changing data distri-
bution [5]. However, by analyzing subsets of a data stream
between two significant concept drifts, in which the data is
fixed and its distribution does not change significantly, both
OL and ANN training become analogous again. Therefore, by
overcoming limitations related to the convergence-time it takes
to train ANNs, their usage to solve complex OL problems
could substantially improve current solutions. Despite their
apparent similarities, the usage of ANNs on OL scenarios
is not straightforward. Therefore, we highlight the following
challenges:

(1) Multiple epochs are usually necessary to train ANNs,
in particular when modelling complex problems [4].
Meanwhile, OL only allows for processing incoming data
batches once (or at most a limited amount of times),

ar
X

iv
:2

21
1.

10
28

0v
1

 [
cs

.L
G

]
 1

8
N

ov
 2

02
2

depending on the general buffering capabilities of the
underlying streaming engine.

(2) The convergence-time for training ANNs still is too high
for many OL use-cases. Current systems still rely on
libraries tailored to perform offline learning. Thus, their
scale-out performance is limited when training from a
data stream (see, e.g., Flink’s dl-on-flink [6] extension,
and Horovod [7] developed by Uber).

(3) Finally, ANNs are highly sensitive to the availability
and quality of labeled input data, which is easier to be
provided and assessed on a fixed dataset than on a data
stream.

Current stream-processing platforms, such as Apache Flink
[8] and Kafka [9] already provide basic extensions [6], [10]
for training ANNs under a streaming setting. However, these
extensions are not prepared to sustain real-time training on
a high-throughput scenario due to the following limitations:
(1) Kafka does not currently support any form of distributed
training in TensorFlow [9]; (2) Flink indeed exploits the
distributed TensorFlow APIs (tf.distribute) which, to
this end, is however limited to buffering the entire training data
and thereby suffers performance issues under an OL setting
(see Section IV); (3) overall, both of the Kafka and Flink
extensions are still largely tailored to a few pre-defined use-
cases and do not generalize well to the requirements of OL
under different data formats, neural-network configurations,
and streaming setups.

Solutions to increase the training efficiency of ANN algo-
rithms, such as Apache SystemML [11], Horovod [7] and
the distributed Tensorflow [12] APIs, on the other hand, do
not natively target OL problems and their characteristics.
Therefore, it is still an open research problem to develop a
system that can, in real-time, train an ANN from a high-
throughput data stream. Moreover, current research on OL
is mostly focused on how to improve the quality of the
input data and how to adapt to concept drifts [13]–[17].
Typical scale-up approaches for training ANNs are limited
by the computational power of a single GPU and the server’s
memory/CPU capacity. Thus, scale-out approaches, like, e.g.,
Horovod [7] used by Uber for several years, come with their
own distributed libraries for training ANNs but are still limited
by their synchronous networking protocols, SGD updates, and
further buffering requirements for the training data.

Finally, under an asynchronous SGD (ASGD) setting [18],
workers are allowed to compute their gradient computations
also on stale model parameters. This behaviour helps to
minimize idle times but makes it harder to mathematically
prove SGD convergence. Recent developments on ASGD
[19]–[27], however, have tackled exactly this issue under dif-
ferent assumptions. In particular, Koloskova et al. [19] recently
proved ASGD convergence with varying computation and
communication frequencies among the worker nodes within
very good error bounds. Moreover, they also proved that
ASGD is always faster than mini-batch SGD—independently
of the delay of the model updates.

Contributions. In this paper, we present the architecture
of TensAIR, an end-to-end dataflow engine combining our
AIR stream-processing engine [28] with TensorFlow [12],
thus yielding a fully distributed OL framework implemented
in C++. Different from current approaches, TensAIR focuses
on scaling-out in particular the training of ANNs via an
asynchronous and decentralized architecture. This architecture
relies on asynchronous message passing in combination with
asynchronous SGD updates, thereby eliminating the bottleneck
of a centralized parameter server for training. Its current
programming interface is flexible enough to let users specify
their desired TensorFlow model structure and optimizer (via
the Keras Python APIs), as well as the concept-drift identifica-
tion algorithm. Although the asynchronous and decentralized
training of ANNs is not a completely new direction [26],
we believe that TensAIR is the first architecture to truly
enable the asynchronous and decentralized training of ANNs
under an OL scenario by incorporating the neural-network
components as first-class dataflow operators—both for training
and prediction.

II. BACKGROUND & RELATED WORK

A. Online Learning

Online learning (OL) recently gained visibility due to the
increase in the velocity and volume of available data sources
compared to the past decade [29]. OL algorithms are trained
using data streams as input, which differs from traditional ML
algorithms that have a pre-defined training dataset.
Streams & Batches. Formally, a data stream S consists of or-
dered events e with timestamps s, i.e., (e1, s1), . . . , (e∞, s∞),
where the si denote the processing time at which the corre-
sponding events ei are ingested into the system. These events
are usually analysed in batches Bj of fixed size b, as follows:

B1 = (e1, s1), . . . , (eb, sb)

B2 = (eb+1, sb+1), . . . , (e2b, s2b)

. . .

Batches Bj are analyzed individually. Thus, if processed
in an asynchronous stream-processing scenario, the batches
(and in particular the included events ei) can become out-of-
order as they are handled within the system, even if the initial
si were ordered. In common stream-processing architectures,
such as Apache Flink [8], Spark [30] and Samza [31], batches
are distinguished into sliding windows, tumbling windows and
(per-user) sessions [32].
Latency vs. Throughput. When analyzing systems that
process data streams, one typically benchmarks them by their
latency and throughput [33]. Formally, latency is the time it
takes for a system to process an event, from the moment it
is ingested to the moment it is used to produce a desired
output. Throughput, on the other hand, is the number of events
that a system can receive and process per time unit. The
sustainable throughput is the maximum throughput at which
a system can handle a stream over a sustained period of time

(i.e., without exhibiting a sudden surge in latency, then called
“backpressure” [34], or even a crash).

B. Artificial Neural Networks

ANNs denote a family of supervised ML algorithms which
are designed to be trained on a pre-defined dataset [35].
A training dataset is composed of multiple (x, y) pairs, in
which x is a training example and y is its corresponding
label. ANNs are usually trained using mini-batches X , which
are sets of (x, y) pairs of fixed size N that are iteratively
(randomly) sampled from the training dataset, thus X =
(xi, yi), . . . , (xi+N , yi+N).

BGD vs. SGD. An ANN model is represented by the weights
and biases of the network, described together by θ. We train
the network using Batch Gradient Descent (BGD) [36] which
is based on Stochastic Gradient Descent (SGD) [37]. BGD
updates θ by considering ∇L(X, θ), which is the gradient of
a pre-defined loss function L with respect to θ when taking
X as input. Thus, we can represent the update rule of θ as
in Equation 1, in which t is the iteration in BGD, and α is a
pre-defined learning rate.

θt+1 = θt − α∇L(X, θt) (1)

Based on Equation 1, θt+1 is defined based on two terms.
The second term is the more computationally expensive one to
calculate, which we refer to as gradient calculation (GC). The
remainder of the equation we call gradient application (GA),
which consists of the subtraction between the two terms and
the assignment of the result to θt+1.

Convergence. Despite the differences between OL and ANNs,
they have a similar training pipeline. Both approaches are
trained based on analogous sets of data points, which are the
batches for OL and the mini-batches for ANNs. A seminal
result for training ANNs [35] is that SGD converges to a
(local) minimum of the loss function as the number of batches
approaches infinity—even when not all of the actually available
training examples fall into these batches. So-called epochs
were introduced to ANN training in order to compensate for
the lack of labeled training examples by performing repeated
iterations over the available examples. A main conjecture we
follow with TensAIR thus is that, instead of using epochs, we
may train the underlying ANN by using new batches from
a data stream as input and hence converge as long as the
principal distribution of the (x, y) pairs in the data stream
remains unchanged (e.g., between two major concept drifts).

C. Distributed Artificial Neural Networks

Over the last years, ANN models have grown in size and
complexity. Consequently, the usage of traditional centralized
architectures has become unfeasible when training complex
models due to the high amount of time they spend until
convergence [7]. Researchers have been studying how to
distribute ANN training to mitigate this. Distributed ANNs
reduce the time it takes to train a complex ANN model by
distributing its computation across multiple compute nodes.

This distribution can follow different parallelization methods,
system architectures, and synchronization settings [38].

1) Parallelization methods: There are many possible par-
allelization strategies for ANNs [38]. We describe below the
two most common ones: model and data parallelism.
Model Parallelism. In model parallelism [18], the ANN
model is split into different parts which are distributed among
the worker nodes. The major challenge when using model
parallelism is to determine how to partition the model and
keep the computation balanced among the workers [38].
Considering the inherent difficulty of developing a splitting
method that is generic enough to be used on different ANN
models and scalable enough to be distributed across multiple
nodes, we omit the consideration of model parallelism in this
work.
Data Parallelism. In data parallelism [18], the N training
pairs within a mini-batch are assumed to be independent of
each other [39]. Thus, workers are initialized as replicas and
trained with different splits of those N pairs. The replicas
perform the GC steps over the data received and then syn-
chronize their parameters among themselves. This method of
parallelism is the most common one and has existed since
the first implementations of ANNs [38]. Frameworks like
TensorFlow [12] or PyTorch [40] use data parallelism by
default when deployed on multi-core compute nodes or GPUs.

2) System Architectures: The synchronization among the
workers’ parameters in a data-parallel ANN setting is either
centralized or decentralized [38], as described below.
Centralized. In a centralized architecture [18], workers
systematically send their parameter updates to one or multiple
parameter servers. Those servers aggregate the updates of all
workers and apply them to a centralized model [38]. Then,
the workers use the centralized model on the next iterations
of BGD. Despite being easier to manage compared to de-
centralized architectures, the scalability when using parameter
servers is limited. Thus, by relying on parameter servers to
aggregate updates and broadcast them to all workers, the
parameter servers may become the actual bottleneck of such
an architecture [41].
Decentralized. In a decentralized architecture [18], the work-
ers synchronize themselves using a broadcasting-like form of
communication [42] which eliminates the bottleneck of the
parameter servers. An AllReduce operation may be performed
on a fully connected network, generating a communication
cost of O(n2) over n workers; or, on ring-like topologies, an
Ring-AllReduce operation may reduce the communication to
O(n) [38] but typically increases the time it takes to propagate
the parameters through the network.

3) Synchronization Settings: The aggregation and applica-
tion of the model updates in a data-parallel ANN system can
be synchronous or asynchronous. Those settings are described
below.
Synchronous. In a synchronous setting [18], workers have to
synchronize themselves after each iteration. Therefore, they
can only initialize the next GC step if their models are

synchronized. This synchronization barrier directly facilitates
the proof of convergence of SGD (as in a centralized setting)
but wastes computational resources at idle times (i.e., when
workers have to wait for others to resume their computation)
[38].

Asynchronous. In an asynchronous SGD (ASGD) setting
[18], workers are allowed to compute GC steps also on
stale model parameters. This behaviour obviously minimizes
idle times but makes it harder to mathematically prove SGD
convergence. Recent developments on ASGD [19]–[25], [27],
[43], however, have tackled exactly this issue under different
assumptions. Koloskova et al. [19] recently proved that ASGD
is always faster than BGD. Furthermore, they also show
that ASGD converges under a parameter-server setting within
O(σ

2

ε2 +
√
τmaxτavg

ε) iterations to an ε-small error, with τ being
the gradient delay and a bounded variance for the gradients
σ2 ≥ 0.

D. TensorFlow

TensorFlow (TF) provides a collection of APIs to implement
and execute ML algorithms [12]. It is one of the most popular
ANN frameworks and is used by companies such as Google,
Intel, Twitter, and Coca-Cola. TensorFlow is open-source, and
it is available in multiple languages such as Python, Java, C,
C++, and Go. Noteworthy TF features are its performance,
transparent acceleration via GPUs, and its integration with
Keras [44]. Keras is a high-level framework, written in Python,
that simplifies ANN implementations. TF supports distributed
training via the tf.distribute.Strategy API. This
API allows the user to choose among multiple distributed
strategies, such as the MirrorredStrategy (referred to
as “TF Mirror” in our experiments), which is decentralized
and synchronous, and the ParameterServerStrategy,
which is centralized and can be either synchronous or asyn-
chronous.

E. AIR Distributed Dataflow Engine

Asynchronous Iterative Routing (AIR) is a distributed
dataflow engine which implements a light-weight iterative
sharding protocol [45] on top of the Message Passing Interface
(MPI). It is a native stream-processing engine that processes
complex dataflows, consisting of direct acyclic graphs (DAGs)
of logical dataflow operators. AIR’s main features are that
it uses an asynchronous MPI protocol and does not rely on
a master-client architecture (but follows a pure client-client
pattern) for communication. Both of these characteristics differ
AIR both from existing bulk-synchronous processing (BSP)
systems, such as Apache Spark [30], and asynchronous stream-
processing (ASP) engines, such as Apache Flink [8] and
Samza [31]. AIR is implemented in C++ using POSIX threads
(pthreads) for multi-threading and MPI for communication
among nodes. Due to its light-weight and robust architecture,
AIR’s scale-out performance has been shown to be up to 15
times better than Spark and up to 9 times better than Flink
[28], on a variety of HPC settings.

III. TENSAIR ARCHITECTURE

We now introduce the architecture of TensAIR, a distributed
stream-processing engine (supporting the common dataflow
operators like Map, Reduce, Join, etc.), which has been
augmented with the data-parallel, decentralized, asynchronous
ANN operator Model, with train and predict as two
new OL functions. TensAIR is a TensorFlow framework de-
veloped on top of AIR [28], [45], which enables a remarkable
scale-out performance for training ANNs in an online learning
scenario.

A. TensAIR

Just like AIR, TensAIR is a native stream-processing en-
gine that processes complex dataflows consisting of logical
dataflow operators. This means that TensAIR can scale out
both the training and prediction tasks of an ANN model
to multiple compute nodes, either with or without GPUs
associated with them. TensAIR has its dataflow defined based
on AIR operators and can be visualized using a graph (see
Figure 1). However, different from AIR, a TensAIR dataflow
is not a DAG because it allows cycles among the model oper-
ators. Other than some adaptations to the source code to allow
cycles in an AIR dataflow, our TensAIR extension did however
not affect the general AIR framework (nor TensorFlow itself).

Fig. 1: TensAIR dataflow with n distributed ModelW2V

instances and a single instance of Map, Split, UDF and
ModelSA.

Figure 1 depicts the dataflow for a Sentiment Analysis (SA)
use-case on a Twitter data stream. This dataflow predicts the
sentiments of live tweets using a pre-trained ANN model
(ModelSA). However, it does not rely on pre-defined word
embeddings. The dataflow constantly improves its embeddings
on a second Word2Vec (W2V) ANN model (ModelW2V),
which it trains using the same input stream as used for the
predictions. By following a passive concept-drift adaptation
strategy, it can adapt its sentiment predictions in real-time
based on changing word distributions among the input tweets.
Moreover, it does not require any sentiment labels for newly
streamed tweets at ModelSA, since only ModelW2V is re-

trained in a self-supervised manner by generating mini-batches
of word pairs (x, y) directly from the input tweets.

TensAIR Dataflows. Generally, a TensAIR dataflow is
composed of logical dataflow operators which all extend a
basic Vertex superclass in AIR [45]. Vertex implements
AIR’s asynchronous MPI protocol via multi-threaded queues
of incoming and outgoing messages, which are exchanged
among all nodes (aka. “ranks”) in the network asynchronously.
The number of instances of each Vertex subclass can be
configured beforehand. In Figure 1, we represent ModelW2V

with n instances, while Map, Split, UDF and ModelSA have
1 instance here for simplicity.

Our SA dataflow starts with Map which receives tweets
from a Twitter input stream (implemented via cURL or a file
interface) and tokenizes the tweets based on the same word
dictionary also used by ModelW2V and ModelSA. Split
then identifies whether the tokenized tweets shall be used for
re-training the word embeddings, for sentiment prediction, or
for both. If the tokenized tweets are selected for training,
they are turned into mini-batches via the UDF operator. The
(x, y) word pairs in each mini-batch X are sharded across
ModelW2V

1 , . . ., ModelW2V
n with a standard hash-partitioner

using words x as keys. ModelW2V implements a default
skip-gram model. If the tokenized tweets are selected for
prediction, a tweet is vectorized by using the word embeddings
obtained from any of the ModelW2V instances (as discussed
in Section III-C, they will all eventually converge to the
same common model) and sent to the pre-trained ModelSA

which then predicts the tweets’ sentiments as either positive or
negative. All ModelW2V instances are initialized with a copy
of the same TensorFlow model, which can be pre-configured
in Keras and be loaded from a file into TensAIR.

Stream Processing. As shown in Algorithm 1, a TensAIR
Model operator has two new OL functions train and
predict, which can asynchronously send and receive mes-
sages to and from other operators. For ModelSA, predict
receives embedded tweets as input, which are obtained from
the current parameters of any of the ModelW2V instances. For
a ModelW2V , train receives either encoded mini-batches
X or gradients ∇x as messages. Each message encoding
a gradient that was computed by another model instance is
immediately used to update the local model accordingly. Each
mini-batch first invokes a local gradient computation and is
then used to update the local model. Each such resulting
gradient is also locally buffered until a desired buffer size
(maxGradBuffer) for the outgoing gradients is reached, upon
which the buffer then is broadcast to all other model instances.

B. Model Consistency

Despite TensAIR’s asynchronous nature, it is necessary
to maintain the models consistent among themselves during
training in order to guarantee that they are aligned and,
therefore, they eventually convergence to a same common
model. In TensAIR, this is given by the exchange of gradients
between the various Model instances.

Algorithm 1: TensAIR Model class with additional
OL functions train and predict (pseudocode)

1 Constructor Model(tfModel , maxBuffer) extends Vertex:
2 model = tfModel ;
3 maxGradBuffer = maxBuffer ;
4 gradients = ∅;
5 ALIVE = true;
6 Function streamProcess(msg):
7 while ALIVE do
8 if msg.mode == TRAIN then
9 train(msg);

else
10 predict(msg);

end
end

11 Function train(msg):
12 if msg.isGradient then
13 model = apply gradient(model, msg);

else
14 gradient = calculate gradient(model, msg);
15 model = apply gradient(model, gradient);
16 gradients = gradients ∪ {gradient};
17 if |gradients| ≥ maxGradBuffer then
18 send gradients(gradients);

end
end

19 Function predict(msg):
20 predictions = model.make predictions(msg)
21 send results(predictions)

Due to our asynchronous computation and application of
the gradients on the distributed model instances, ModelW2V

i

receives gradients calculated by ModelW2V
j (with j 6= i)

which are similar but not necessarily equal to itself. This
occurs whenever ModelW2V

i , which has already applied to
itself a set of Gi = {∇x,∇y, ...,∇z} gradients, calculates
a new gradient ∇a, and sends it to ModelW2V

j , such that
Gi 6= Gj at the time when ModelW2V

j applies ∇a. The
difference |Gi ∪Gj | − |Gi ∩Gj | between these two models is
defined as staleness [46]. This stalenessi,j(∇a) metric is the
symmetric distance between Gi and Gj with respect to the
times at which a new gradient ∇a was computed by a model
i and is applied to model j, respectively. This phenomenon
and the staleness metric are illustrated in Figure 2.

Fig. 2: ASGD staleness on a distributed framework.

Figure 2 illustrates the timeline of messages (containing
both mini-batches and gradients) exchanged among TensAIR
models considering maxGradBuffer = 1. Assume the UDF
distributes 5 mini-batches to 3 models. After receiving their
first mini-batch, each ModelW2V

i calculates a corresponding
gradient. Note that, when applied locally, the staleness of
any gradient is 0 because it is computed and immediately

applied by the same model. While computing or applying a
local gradient, each ModelW2V

i may receive more gradients
to calculate and/or apply from either the UDF or other models
asynchronously. In our protocol, the models first finish their
current gradient computation, immediately apply it locally,
then buffer and send maxGradBuffer many locally computed
gradients to the other models, and wait for their next update.

As illustration, take a look at Model1 in Figure 2. While
computing ∇blue, it receives the yellow mini-batch from the
UDF, which it starts computing immediately after it finishes
processing the blue one—which it had already started when it
received the yellow mini-batch. During the computation of
∇yellow, Model1 receives ∇green to apply, which it does
promptly after finishing ∇yellow. Note that when Model2

computed ∇green and Model3 computed ∇red, they have
not applied a single gradient to their local models at that
time. Thus, |G2| = |G3| = 0. However, before apply-
ing ∇green, G1 = {∇blue,∇yellow} with |G1| = 2 and
staleness1,2(∇green) = 2. Along the same lines, before
applying ∇red, |G1| = 3 and staleness1,3(∇red) = 3.

C. Model Convergence

Since TensAIR operates on data streams and is both asyn-
chronous and fully decentralized (i.e., it has no centralized
parameter server), it exhibits characteristics which current
SGD proofs of convergence [20], [21], [23] do not cover.
Therefore, we next discuss under which circumstances Ten-
sAIR is guaranteed to converge.

First, we consider that training is performed between sig-
nificant concept drifts. Therefore, we assume that the mini-
batches between two subsequent concept drifts do not change.
Thus, if a concept drift occurs during the training, the model
will not converge until the concept drift ends. By considering
this, the data stream between two concept drifts will behave
like a fixed data set. In this case, if given enough training
examples, as seen in [35], each of the local model instances
will eventually converge.

Second, considering TensAIR’s asynchronous and dis-
tributed nature, our SGD updates can be staled. We are not
aware of any ASGD proofs of convergence that contemplate
staleness in a decentralized setting. However, Koloskova et al.
[19] recently proved a tighter convergence rate for ASGD in
a parameter-server setting with varying computation and com-
munication frequency among the worker nodes. Specifically,
they show ASGD convergence within O(σ

2

ε2 +
√
τmaxτavg

ε)
iterations to an ε-small error, with τ being the gradient delay
and a bounded variance for the gradients σ2 ≥ 0. Although
TensAIR does not rely on a centralized parameter server,
its convergence rate can be the same as the one from a
parameter-server setting under specific conditions. One may
achieve this by introducing global synchronization steps to
ensure that all local models become synchronized periodically,
a strategy called Stale-Synchronous Parallelism (SSP) [39].
Under the SSP strategy, the local gradients can still be com-
puted asynchronously but the models updates are limited to
a synchronous communication. We note that staleness under

SSP is analogous to the gradient delay τ in [19]. Both τ
and staleness measure the difference between the state of the
model in which a gradient was calculated versus in which it is
applied. Considering this, we can reduce the SSP convergence
proof to a special case of the parameter-server based proof
from [19], in which all worker nodes from the parameter server
are updated simultaneously.

In practice, we however did not observe any degradation
in the convergence rate of TensAIR when compared to syn-
chronous SGD (see Section IV). Therefore, we did not further
explore the SSP strategy due to its performance limitations
when compared to a fully asynchronous system.

D. Implementation

TensAIR is completely implemented in C++. It includes
the TensorFlow 2.8 native C API to load, save, train, and
predict ANN models. Therefore, it is possible to develop a
TensorFlow/Keras model in Python, save the model to a file,
and load it directly into TensAIR. TensAIR is completely
open-source and available from our Gitlab repository1.

IV. EXPERIMENTS & DISCUSSION

To assess TensAIR, we performed experiments to mea-
sure its performance on solving prototypical ML problems
such as Word2Vec (word embeddings) and CIFAR-10 (image
classification). We empirically validate TensAIR’s model con-
vergence by comparing its training loss curve at increasing
levels of distribution across both CPUs and GPUs. Our re-
sults confirm that TensAIR’s ASGD updates achieve similar
convergence on Word2Vec and CIFAR-10 as a synchronous
SGD propagation. At the same time, we achieve a nearly linear
reduction in training time on both problems. Due to this reduc-
tion, TensAIR significantly outperforms not just the Apache
Kafka and Flink extensions (based on both the standard and
distributed TensorFlow APIs), but also Horovod which is a
long-standing effort to scale-out ANN training. Finally, by
providing an in-depth analysis of a sentiment analysis (SA)
use-case on Twitter, we demonstrate the importance of OL in
the presence of concept drifts (i.e., COVID-19 related tweets
with changing sentiments). In particular the SA usecase is an
example of task that would be deemed too complex to be
adapted in real-time (at a throughput rate of ca. 6,000 tweets
per second) when using other OL frameworks.

HPC Setup. We carried out the experiments described in
this section using the HPC facilities of the University of
Luxembourg [47]. We distributed the ANNs training using up
to 4 Nvidia Tesla V100 GPUs per node with 768 GB RAM
each. We also deployed up to 16 regular nodes, with 28 CPU
cores and 128 GB RAM each, for the CPU-based (i.e., without
using GPU acceleration) settings.

Event Generation. We trained both sparse (word embed-
dings2) and dense (image classification3) models based on

1https://gitlab.uni.lu/mdalle/TensAIR
2https://www.tensorflow.org/tutorials/text/word2vec
3https://www.tensorflow.org/tutorials/images/cnn

English Wikipedia articles and images from CIFAR-10 [48],
respectively. Instead of connecting to actual streams, we
chose those static datasets to facilitate a consistent analysis
of the results and ensure reproducibility. Moreover, to sim-
ulate a streaming scenario, we implemented an additional
MiniBatchGenerator as an entry-point Vertex oper-
ator (compare to Figure 1) which generates events ei with
timestamps si, groups them into mini-batches Xj by using
a tumbling-window semantics, and sends these mini-batches
to the subsequent operators in the dataflow. Furthermore, this
allows us to simulate streams of unbounded size by iterating
over the datasets multiple times (in analogy to training with
multiple epochs over a fixed dataset).
Sparse vs. Dense Models. We chose Word2Vec and CIFAR-
10 because they represent prototypical ML problems with
sparse and dense model updates, respectively. Sparse updates
mean that only a small portion of the neural network variables
actually become updated per mini-batch [49]. Hence, sparse-
ness should assist the model convergence when using ASGD,
as observed also in Hogwild! [49]. We trained by sampling 1%
from English Wikipedia which corresponds to 11.7M training
examples (i.e., word pairs). On the other hand, we chose
CIFAR-10 for being dense. Thus, we could analyze how this
characteristic possibly hinders convergence when models are
distributed and updated asynchronously. We train on all of the
50,000 labeled images of the CIFAR-10 dataset.

A. Convergence Analysis

We first explored TensAIR’s ability to converge by deter-
mining if and how ASGD might degrade the quality of the
trained model (Figure 3). We compared the training loss curve
of Word2Vec and CIFAR-10 by distributing TensAIR models
from 1 to 4 GPUs using 1 TensAIR rank per GPU (Figures
3b & 3d). We additionally explored the models convergence
when trained with distributed CPU nodes (Figures 3a & 3c).
In this second scenario, we trained up to 64 ranks on 16
nodes simultaneously without GPUs. Note that, when using
a single TensAIR rank, TensAIR’s gradient updates behave as
in a synchronous SGD implementation.

The extremely low variance among all loss curves shown
in Figures 3a and 3b demonstrates that our asynchronous and
distributed SGD updates do not at all negatively affect the
convergence of the Word2Vec models. We assume that this is
due to (1) the sparseness of Word2Vec, and (2) a low staleness
of the gradients (which are relatively inexpensive to compute
and apply for Word2Vec). The low staleness indicates a fast
exchange of gradients among models.

In Figure 3c, we however observe a remarkable degradation
of the loss when distributing CIFAR-10 across multiple nodes.
This is due to the fixed learning rate used on all settings
being the same. When distributing dense models on multiple
ranks without adapting the mini-batch size, it is well known to
result in a degradation of the loss curve (even on synchronous
settings). This degradation occurs because the behaviour of
training N models with mini-batches of size x is similar to
training 1 model with mini-batches of size N · x. To mitigate

this issue, Horovod recommends to increase the learning rate
α by the number of ranks used to distribute the model [50],
i.e., αnew = α ·N . Accordingly, in Figure 3d, we again do not
see any degradation of the loss when distributing CIFAR-10
across multiple GPUs because we use a maximum of 4 GPUs.

B. Speed-up Analysis

Next, we explore the performance of TensAIR under in-
creasing levels of distribution and with respect to varying
mini-batch sizes over both Word2Vec and CIFAR-10. This
experiment is also deployed on up to 64 ranks (16 nodes)
and up to 4 GPUs (1 node). We observe in Figure 4 that
TensAIR achieves a nearly-linear scale-out under most of our
settings. In most cases, TensAIR achieves a better speedup
when training with smaller mini-batches. This difference is
because the mini-batch size is inversely proportional to the
training time. Hence, the smaller the training time, the bigger
is the fraction of the computation that is not distributed.
Thus, models with expensive gradient computations will have
a better scale-out performance.

C. Baseline Comparison

Apart from TensAIR, it is also possible to train ANNs by
using Apache Kafka and Flink as message brokers to generate
data streams of varying throughputs. Kafka is already included
in the standard TensorFlow I/O library (tensorflow_io),
which however allows no actual distribution in the training
phase [10]. Flink, on the other hand, employs the distributed
TensorFlow API (tensorflow.distribute). However,
we were not able to run the provided dl-on-flink use-case [6]
even after various attempts on our HPC setup. We therefore
report the direct deployment of our Word2Vec and CIFAR-10
use-cases (Figures 5 & 6) on both the standard and distributed
TensorFlow APIs (the latter using the MirroredStrategy
option of tensorflow.distribute). We thereby, simu-
late a streaming scenario by feeding one mini-batch per train-
ing iteration into TensorFlow, which yields a very optimistic
upper-bound for the maximum throughput that Kafka and
Flink could achieve. In a similar manner, we also determined
the maximum throughput of Horovod [7], which is however
not a streaming engine by default.

In Figures 5 and 6, we see that TensAIR clearly surpasses
both the standard and distributed TensorFlow setups as well as
Horovod. This occurs because, as opposed to TensAIR, their
architectures were not developed to train on batches arriving
from data streams. Thus, in a streaming scenario, the overhead
of transferring the training data to the worker nodes increases
by the number of training steps. On the other hand, TensAIR
is an end-to-end dataflow engine prepared to train ANNs from
streaming data. Thus, the transfer of training data overhead is
mitigated by the asynchronous iterative routing protocol. This
allows TensAIR to (1) reduce both computational resources
and idle times while the data is being transferred, and (2) have
an optimized buffer management for incoming mini-batches
and outgoing gradients, respectively.

(a) (b) (c) (d)
Fig. 3: Convergence analysis of TensAIR on the Word2Vec and CIFAR-10 use-cases.

(a) (b) (c) (d)
Fig. 4: Speedup analysis of TensAIR on the Word2Vec and CIFAR-10 use-cases.

Fig. 5: Throughput comparison between TensAIR, Tensor-
Flow (standard and distributed), and Horovod in the W2V

use-case.

Fig. 6: Throughput comparison between TensAIR, Ten-
sorFlow (standard and distributed), and Horovod in the

CIFAR-10 use-case.

In our experiments, we could sustain a maximum training
rate of 285,560 training examples per second on Word2Vec
and 200,000 images per second on CIFAR-10, which cor-
responds to sustainable throughputs of 14.16 MB/s and 585
MB/s respectively. We reached these values by training with
3 GPUs on Word2Vec and 4 GPUs on CIFAR-10.

D. Sentiment Analysis of COVID19

Here, we exemplify the benefits of training an ANN in real-
time from streaming data. To this end, we analyze the impact
of concept drifts on a sentiment analysis setting, specifically
drifts that occurred during and due to the COVID19 pandemic.
First, we trained a large Word2Vec model using 20% of
English Wikipedia plus the Sentiment140 dataset [51] from
Stanford. Then, we trained an LSTM model [52] using the
Sentiment140 dataset together with the word embeddings
we trained previously. After three epochs, we reached 78%
accuracy on the training and the test set. However, language
is always evolving. Thus, this model may not sustain its
accuracy for long if deployed to analyze streaming data in
real-time. We exemplify this by fine-tuning the word embed-
dings with 2M additional tweets published from November
1st, 2019 to October 10th, 2021 containing the following
keywords: covid19, corona, coronavirus, pandemic, quaran-
tine, lockdown, sarscov2. Then, we compared the previously
trained word embeddings and the fine-tuned ones and found an
average cosine difference of only 2%. However, despite being
small, this difference is concentrated onto specific keywords.

Term rt corona pandemic booster 2021
Difference 0.728 0.658 0.646 0.625 0.620

TABLE I: Cosine differences after updating word embeddings.

As shown in Table I, keywords related to the COVID-19
pandemic are the ones that most suffered from a concept
drift. Take as example pandemic, booster and corona, which
had over 62% of cosine difference before and after the
Word2Vec models have been updated. Due to the concept drift,
the sentiment over specific terms and, consequently, entire
tweets also changed. One observes this change by comparing
the output of our LSTM model when: (1) inputting tweets
embedded with the pre-trained word embeddings; (2) inputting
tweets embedded with the fine-tuned word embeddings. Take
as an example the sentence “I got corona.”, which had a
sentiment of +2.0463 when predicted with the pre-trained
embeddings; and −2.4873 when predicted with the fine-tuned
embeddings. Considering that the higher the sentiment value
the more positive the tweet is, we can observe that corona
(also representing a brand of a beer) was seen as positive and
now is related to a very negative sentiment.

To tackle concept drifts in this use-case, we argue that
TensAIR with its OL components (as depicted in Figure 1)
could be readily deployed. A real-time pipeline with Twitter
would allow us to constantly update the word embeddings (our
sustainable throughput would be more than sufficient com-
pared to the estimated throughput of Twitter). Consequently,

the sentiment analysis algorithm would always be up-to-date
with respect to such concept drifts.

V. CONCLUSIONS

OL is an emerging area of research which still has not
extensively explored the real-time training of ANNs. In this
paper, we introduced TensAIR, a novel end-to-end dataflow
engine for OL from data streams. It uses an asynchronous
iterative routing (AIR) protocol to train and predict ANNs in a
distributed manner. One major feature of TensAIR is its high
performance due to its direct inclusion of TensorFlow as a
first-class dataflow operator. TensAIR achieves a nearly linear
scale-out performance in terms of sustainable throughput and
with respect to its number of worker nodes. It uses TensorFlow
models and supports the common dataflow operators, such
as Map, Reduce, and Join, which facilitates the imple-
mentation of diverse use-cases. Therefore, we highlight the
following capabilities of TensAIR: (1) process multiple data
streams simultaneously; (2) train models using either CPUs,
GPUs, or both; (3) train ANNs in an asynchronous and dis-
tributed manner; and (4) incorporate user-defined data pre- and
post-processing pipelines. We empirically demonstrate that,
on a real-time streaming scenario, TensAIR surpasses both
the standard and distributed TensorFlow APIs (representing
upper bounds for the throughput of Apache Kafka and Flink,
respectively) when training ANNs from streaming data. We
also show that, in our experiments, the model degradation due
to ASGD is insignificant in practice.

As future work, we believe that TensAIR may also lead
to novel online learning use-cases which were previously
considered too complex but now become feasible due to
very good scale-out performance of TensAIR. Specifically,
we intend to study similar learning tasks over audio/video
streams which we see as the main target domain for stream
processing. To reduce the computational cost of training an
ANN indefinitely, we shall also investigate how different active
concept-drift detection algorithms behave under an OL setting
with ANNs.

ACKNOWLEDGMENT

This work is funded by the Luxembourg National Research
Fund under the PRIDE program (PRIDE17/12252781).

REFERENCES

[1] S. C. Hoi, D. Sahoo, J. Lu, and P. Zhao, “Online learning: A compre-
hensive survey,” Neurocomputing, vol. 459, pp. 249–289, 2021.

[2] A. S. Iwashita and J. P. Papa, “An overview on concept drift learning,”
IEEE access, vol. 7, pp. 1532–1547, 2018.

[3] M. Heusinger, C. Raab, and F.-M. Schleif, “Passive concept drift han-
dling via variations of learning vector quantization,” Neural Computing
and Applications, pp. 1–12, 2020.

[4] S. Afaq and S. Rao, “Significance of epochs on training a neural
network,” International Journal of Scientific and Technology Research,
vol. 19, no. 6, pp. 485–488, 2020.

[5] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM computing surveys (CSUR),
vol. 46, no. 4, pp. 1–37, 2014.

[6] (2022) Deep learning on Flink. Github. Accessed: 2022-08-05. [Online].
Available: https://github.com/flink-extended/dl-on-flink

https://github.com/flink-extended/dl-on-flink

[7] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in Tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[8] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache Flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, vol. 36, no. 4, 2015.

[9] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, vol. 11, 2011,
pp. 1–7.

[10] (2022) Robust machine learning on streaming data using Kafka
and Tensorflow-IO. Tensorflow I/O tutorials. Accessed: 2022-08-05.
[Online]. Available: https://www.tensorflow.org/io/tutorials/kafka

[11] M. Boehm, M. W. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M.
Manshadi, N. Pansare, B. Reinwald, F. R. Reiss, P. Sen, A. C. Surve
et al., “SystemML: Declarative machine learning on spark,” Proceedings
of the VLDB Endowment, vol. 9, no. 13, pp. 1425–1436, 2016.

[12] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for
large-scale machine learning,” in 12th USENIX symposium on operating
systems design and implementation (OSDI 16), 2016, pp. 265–283.

[13] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 12, pp. 2346–2363, 2018.

[14] H. Hu, M. Kantardzic, and T. S. Sethi, “No free lunch theorem for
concept drift detection in streaming data classification: A review,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 10, no. 2, p. e1327, 2020.

[15] S. Priya and R. A. Uthra, “Deep learning framework for handling con-
cept drift and class imbalanced complex decision-making on streaming
data,” Complex & Intelligent Systems, pp. 1–17, 2021.

[16] R. S. M. Barros and S. G. T. C. Santos, “A large-scale comparison of
concept drift detectors,” Information Sciences, vol. 451, pp. 348–370,
2018.

[17] T. S. Sethi and M. Kantardzic, “On the reliable detection of concept
drift from streaming unlabeled data,” Expert Systems with Applications,
vol. 82, pp. 77–99, 2017.

[18] S. Ouyang, D. Dong, Y. Xu, and L. Xiao, “Communication optimization
strategies for distributed deep neural network training: A survey,”
Journal of Parallel and Distributed Computing, vol. 149, pp. 52–65,
2021.

[19] A. Koloskova, S. U. Stich, and M. Jaggi, “Sharper convergence guar-
antees for asynchronous SGD for distributed and federated learning,”
in Advances in Neural Information Processing Systems, A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022.

[20] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware distributed
parameter servers,” in Proceedings of the 2017 ACM International
Conference on Management of Data, 2017, pp. 463–478.

[21] T. Sun, R. Hannah, and W. Yin, “Asynchronous coordinate descent under
more realistic assumptions,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

[22] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” Advances in Neural Information
Processing Systems, vol. 28, 2015.

[23] X. Zhang, J. Liu, and Z. Zhu, “Taming convergence for asynchronous
stochastic gradient descent with unbounded delay in non-convex learn-
ing,” in 2020 59th IEEE Conference on Decision and Control (CDC),
2020, pp. 3580–3585.

[24] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. Xing, “High-
performance distributed ml at scale through parameter server consistency
models,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 29, no. 1, 2015.

[25] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ran-
zato, A. Senior, P. Tucker, K. Yang et al., “Large scale distributed deep
networks,” Advances in neural information processing systems, vol. 25,
2012.

[26] H. Zhang, C.-J. Hsieh, and V. Akella, “Hogwild++: A new mechanism
for decentralized asynchronous stochastic gradient descent,” in 2016
IEEE 16th International Conference on Data Mining (ICDM). IEEE,
2016, pp. 629–638.

[27] J. Liu, S. Wright, C. Ré, V. Bittorf, and S. Sridhar, “An asynchronous
parallel stochastic coordinate descent algorithm,” in International Con-
ference on Machine Learning. PMLR, 2014, pp. 469–477.

[28] V. E. Venugopal, M. Theobald, D. Tassetti, S. Chaychi, and A. Tawakuli,
“Targeting a light-weight and multi-channel approach for distributed

stream processing,” Journal of Parallel and Distributed Computing,
2022.

[29] H. M. Gomes, J. Read, A. Bifet, J. P. Barddal, and J. Gama, “Machine
learning for streaming data: state of the art, challenges, and opportuni-
ties,” ACM SIGKDD Explorations Newsletter, vol. 21, no. 2, pp. 6–22,
2019.

[30] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
Spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[31] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: stateful scalable stream pro-
cessing at LinkedIn,” Proceedings of the VLDB Endowment, vol. 10,
no. 12, pp. 1634–1645, 2017.

[32] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and
S. Whittle, “The dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order
data processing,” Proc. VLDB Endow., vol. 8, no. 12, p. 1792–1803, aug
2015. [Online]. Available: https://doi.org/10.14778/2824032.2824076

[33] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and
V. Markl, “Benchmarking distributed stream data processing systems,” in
2018 IEEE 34th International Conference on Data Engineering (ICDE),
2018, pp. 1507–1518.

[34] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter heron: Stream
processing at scale,” in Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, ser. SIGMOD ’15. New
York, NY, USA: ACM, 2015, p. 239–250.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[36] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[37] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400–407, 1951.

[38] R. Mayer and H.-A. Jacobsen, “Scalable deep learning on distributed
infrastructures: Challenges, techniques, and tools,” ACM Computing
Surveys (CSUR), vol. 53, no. 1, pp. 1–37, 2020.

[39] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” ACM Computing Surveys
(CSUR), vol. 52, no. 4, pp. 1–43, 2019.

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[41] C. Chen, W. Wang, and B. Li, “Round-robin synchronization: Mitigating
communication bottlenecks in parameter servers,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications. IEEE, 2019,
pp. 532–540.

[42] S. Ouyang, D. Dong, Y. Xu, and L. Xiao, “Communication optimization
strategies for distributed deep neural network training: A survey,”
Journal of Parallel and Distributed Computing, vol. 149, pp. 52–65,
2021.

[43] J. Liu and S. J. Wright, “Asynchronous stochastic coordinate descent:
Parallelism and convergence properties,” SIAM Journal on Optimization,
vol. 25, no. 1, pp. 351–376, 2015.

[44] F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/
fchollet/keras

[45] V. E. Venugopal, M. Theobald, S. Chaychi, and A. Tawakuli, “AIR:
A light-weight yet high-performance dataflow engine based on asyn-
chronous iterative routing,” in 2020 IEEE 32nd International Symposium
on Computer Architecture and High Performance Computing (SBAC-
PAD), 2020, pp. 51–58.

[46] M. D. Tosi, V. Ellampallil Venugopal, and M. Theobald, “Convergence-
time analysis of asynchronous distributed artificial neural networks,” in
5th Joint International Conference on Data Science & Management of
Data (CODS/COMAD), 2022, pp. 314–315.

https://www.tensorflow.org/io/tutorials/kafka
https://doi.org/10.14778/2824032.2824076
http://www.deeplearningbook.org
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/fchollet/keras
https://github.com/fchollet/keras

[47] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos, “Management of
an academic hpc cluster: The ul experience,” in Proc. of the 2014 Intl.
Conf. on High Performance Computing & Simulation (HPCS 2014),
2014, pp. 959–967.

[48] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” University of Toronto, Department of Computer
Science, Tech. Rep., 2009.

[49] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free ap-
proach to parallelizing stochastic gradient descent,” Advances in neural
information processing systems, vol. 24, 2011.

[50] (2019) Horovod with keras. Horovod documentation. Accessed: 2022-
05-18. [Online]. Available: https://horovod.readthedocs.io/en/stable/
keras.html

[51] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using
distant supervision,” CS224N project report, Stanford, vol. 1, no. 12,
2009.

[52] (2022) Tensorflow. Tensorflow tutorials. Accessed: 2022-05-
27. [Online]. Available: https://www.tensorflow.org/text/tutorials/text
classification rnn

https://horovod.readthedocs.io/en/stable/keras.html
https://horovod.readthedocs.io/en/stable/keras.html
https://www.tensorflow.org/text/tutorials/text_classification_rnn
https://www.tensorflow.org/text/tutorials/text_classification_rnn

	I Introduction
	II Background & Related Work
	II-A Online Learning
	II-B Artificial Neural Networks
	II-C Distributed Artificial Neural Networks
	II-C1 Parallelization methods
	II-C2 System Architectures
	II-C3 Synchronization Settings

	II-D TensorFlow
	II-E AIR Distributed Dataflow Engine

	III TensAIR Architecture
	III-A TensAIR
	III-B Model Consistency
	III-C Model Convergence
	III-D Implementation

	IV Experiments & Discussion
	IV-A Convergence Analysis
	IV-B Speed-up Analysis
	IV-C Baseline Comparison
	IV-D Sentiment Analysis of COVID19

	V Conclusions
	References

