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Adaptive Machine Learning

MIT
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Our weird behavior during the pandemic is
messing with Almodels

Machine-learning models trained on normal behavior are showing cracks —
forcing humans to step in to set them straight.
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Offline Learning vs Online Learning
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i.i.d. assumption in data stream

Typical assumption (in data streams):
(xt, yt) ~ Pt is iid wrt Pt

i.e., no temporal dependence and same distribution per concept. So, drift is something to detect and
‘deal with’, by rebuilding/adapting models.
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i.i.d. assumption vs. the Electricity data stream
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Bifet, Albert, et al. Pitfalls in benchmarking data stream classification and how to
avoid them. ECML PKDD. Springer, Berlin, Heidelberg, 2013.
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Electricity data stream and Kappa Statistic
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Bifet, Albert, et al. Pitfalls in benchmarking data stream classification and how to
avoid them. ECML PKDD. Springer, Berlin, Heidelberg, 2013.
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Existing solutions

Comparison among Offline Machine Learning, Time Series Analysis,
Incremental Learning, and Streaming Machine Learning

1.i.d. dataset 1i.i.d. data stream time-dependent time series evolving data stream not i.i.d. data stream

Offline Machine Learning
Incremental Learning

Time Series Analysis
Streaming Machine Learning
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The most general scenario: not i.i.d. data stream does not find a comprehensive solution
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Time Evolving Analytics framework

Desiderata of the ideal TEA framework:
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Research question

Aiming at drawing more solid links from data stream learning to the existing time series

and sequential learning literature, my work investigated the following research
question:

In case of learning from evolving data stream, does the use of online sequential models
improve classification with respect to Streaming Machine Learning models?
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KalmanNB & Hoeffding Kalman Tree

RQ1: Does the use of a sequential-state space model such as Kalman Filtering helps an online
algorithm in learning from evolving data streams?
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KalmanNB & Hoeffding Kalman Tree

RQ1: Does the use of a sequential-state space model such as Kalman Filtering helps an online
algorithm in learning from evolving data streams?

| Kalman Naive Bayes Data Stream
(Xil yl) ]
Algorithm
Probability
: \ i Pet
Kalman Filter, Kalman Gain K, = =%
_ Prediction o< —
Kalman Filter, |
— > |
[
. [
Kalman Filter, . |
Previous \ Current Measurement
Estimate | Estimate Uncertainty
. Uncertainty I Uncertainty
Kalman Filter, Pei P
[
Kalman Fllter5 Previous Current  Measured System
| Estimate Estimate Estimate State
\ / i1-1 gt Z,

POLITECNICO MILANO 1863 Towards Time-Evolving Analytics Giacomo Ziffer




KalmanNB & Hoeffding Kalman Tree

Hoeffding Kalman Tree: KalmanNB at the leaves of the Hoeffding Tree to classify data stream
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Findings

I Kalman filtering increase model robustness, making it adaptive to
changes at a minor additional computational cost

I Processing time and memory consumption are significantly lower
than state-of-the-art SML algorithms

1 Kalman Filtering-based techniques suitable only for categorical
features

Ziffer, G., Bernardo, A., Della Valle, E., & Bifet, A. (2021, December). Kalman Filtering for Learning with Evolving Data Streams.
In 2021 IEEE International Conference on Big Data (Big Data) (pp. 5337-5346). IEEE.
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LSTM for time-dependent data streams

RQ2: Does the use of an online sequential model, such as Incremental LSTM, improve classification
while learning from time-dependent evolving data stream?

Data stream sub-batching + Incremental LSTM
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Findings

I Incremental LSTM proved effective in streaming scenarios where the
temporal dependence is relevant
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1 Not optimal solution to learn from a data stream: high computational
resources, i.e., time and RAM, consumption
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Ongoing and Future Works

Definition of learning models for time-dependent data streams
* Echo State Networks and Reservoir Computing for stream learning

* Relationships between SML and Continual Learning

Application to heterogenous data
* Definition of high order temporal data stream

e Extension of the methods to learn from unstructured data streams
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Time-Evolving Analytics with Symbolic Al
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Source: Knowable Magazine

OLITECNICO MILANO 1863 Towards Time-Evolving Analytics Giacomo Ziffer 18




Thank you!

Questions?

m Giacomo Ziffer

] giacomo.ziffer@polimi.it

@ gziffer
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