

Never Stop Learning at the Edge

Big Data trend

Data is growing, and the rate of growth is accelerating. The sum of data generated by 2025 is set to accelerate exponentially to 175 zettabytes, an order of magnitude bigger than the storage production capability.

Innovation is not driven by trends, but by the need to create more value under constraints. This exponential inflation will thus require analyzing almost 30% of global data in real-time.

Dave Mosley,
CEO of Seagate Technology

Data at the Edge: A Missed Opportunity

Data, data everywhere

Vibration

Pressure

Chemical properties oil
VOCs

Acoustic

Thermal images
Rotation speed
Power consumption

Data, data everywhere

Ultrasonic
Vibration

Pressure
Chemical properties oil

VOCs
Temperature

Thermal images
Power consumption

Current

Rotation speed
Acoustic

Cloud-centric analytics

Slow

High latency and network traffic load

Expensive

High implementation and data transmission costs

Insecure

Sending sensitive data on external service providers

Energy-consuming

High power requirements for running Al models in cloud data centers

High CO_{2} footprint

Cloud computing and data centers are a significant driver of carbon emissions

Edge-based analytics

Fast

Lowest latency to inference at data collection point

Cost-effective

Higher bandwidth and no need for large infrastructure and expensive GPUs/NPUs

Secure

Companies keep all of their sensitive data and compute inside their local network

Energy-efficient

Efficient Al targeting battery-powered and portable applications

Low CO_{2} footprint

No network connectivity and cloud-based Al minimize the total carbon footprint

Training and Inference @ Edge

motus.ml

How do we achieve edge machine learning?
We combine 2 main technologies:

Streaming Machine
 Learning

Tiny Machine Learning

We move intelligent systems as close as possible to where data are generated

Our Unique Value Proposition

A key add-on we master

Streaming Machine Learning

Traditional approach: data

Batch: a finite static set of data, usually tabular, that does not evolve over time, and describes historical past events.

Random access to data

No restrictions on memory/time for training

Well defined training phase

Access to all labeled data used for training

Traditional approach: ML setting

Manual, Stateless Retraining

ML team focuses mainly on developing ML models, updating existing ML models takes a backseat. The process of updating a ML is ad-hoc and usually manual.

motus.ml approach: data

Data Stream: a continuous flow of data generated at high-speed in dynamic, time-changing environments.

Sequential access only

Strict time/memory
requirements

Characteristics of data seen so far

motus.ml approach: SML setting

Automated, Stateful Training

With stateful training, you continue training your model on new data instead of retraining your model from scratch. The process of updating a ML is automated.

Stateless retraining vs Stateful training

```
Stateless retraining
```


Cost investment of AI processing

Current AI processing

Often struggles to maintain investment (time, memory, cost) below reasonable level

motus.ml Al processing

Efficiently generates incremental models from data streams

SML in a nutshell

- SML can be applied to unbounded real-time data

- Incremental learning: SML models can incorporate data on the fly, i.e., one sample at a time
- SML techniques are resource efficient
- Dynamic models: can work in non-stationarity environment

Learning \& Inference @ Edge

TinyML pipeline

Pipeline for structured data

(1ाIT

Structured Data

Pipeline for unstructured data

Pipeline for streaming data

Performance of SML@Edge

Edge device: Raspberry Pi4b, Quad core Cortex-A72, 4 GB RAM

On-device performance (inference + training on-device)

THROUGHPUT

80.7k inst/sec

ACCURACY
No loss w.r.t. cloud

Software Library

Use Cases

Predictive Maintenance

Data Communication

The next critical component is a secure system by which data can flow between assets and the motus.ml

Sensors
The first step is having high quality sensors that are streaming live data. Sensors will ideally be collecting a wide variety of metrics, without bias.
algorithms.

Time to Failure and Root Cause

Predictions will provide time-to-failure and root cause analysis alerts and insights. This will ease a quick identification of the action required for predictive maintenance.

With motus.ml you can eliminate unscheduled maintenance and instead plan for it with optima material and staff resourcing, resulting in increased productivity and profits.

Maintenance of broadcasting antennas

High maintenance cost

Maintenance of radio navigation technologies (DME)

Sensible data

High site variability

High speed of intervention

Water Network Optimization

Water flow control

Preventing flooding

Analysis of environmental data

Use motus.ml to analyze environmental data:

- unstructured data (video, satellite images)
- flood, sea, tide, weather data

Conclusion

Detachable Artificial Intelligence

- Time critical inference
- Limited to no network access
- On-site specialized Al

Resource-constrained Hardware

- Suitable for any device (MCU \& MP)
- Modular architecture
- OS agnostic

What makes motus.ml unique

motus.ml offers the solution for IoT automation
by using machine learning in a different way compared to current solutions. We can learn what's normal for the individual
device by running onboard our AI algorithms. We can learn what's normal for the individual
device by running onboard our AI algorithms.

EDGE

motus.ml + Stream Reasoning

PREFIX : <ontology/>
SELECT ?S

motus.ml's team

Giacomo Ziffer CEO

Ph.D. student @ PoliMi
Continuous Time Series Analysis

Emanuele Della Valle CRO
Associate professor @ PoliMi
Stream Reasoning, Time Series Analysis \& loT

Alessio Bernardo CTO

Ph.D. student @ PoliMi
Streaming Machine Learning

Marco Balduini
Technical advisor
Co-founder \& CEO @ Quantia Consulting
Data Processing \& Data Integration

Veronika Merlin CMO
Co-founder @ rēs design studio Communication \& Product designer

Marco Brambilla
Scientifical advisor
Full professor @ PoliMi
Big Data Analytics, Model-driven \& IoT

Never Stop Learning at the Edge

